Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 120501    DOI: 10.1088/0256-307X/36/12/120501
GENERAL |
Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation
Zhao Zhang1, Shu-Xin Yang1,2, Biao Li1**
1School of Mathematics and Statistics, Ningbo University, Ningbo 315211
2School of Foundation Studies, Zhejiang Pharmaceutical College, Ningbo 315199
Cite this article:   
Zhao Zhang, Shu-Xin Yang, Biao Li 2019 Chin. Phys. Lett. 36 120501
Download: PDF(4223KB)   PDF(mobile)(4223KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Soliton molecules were first discovered in optical systems and are currently a hot topic of research. We obtain soliton molecules of the (2+1)-dimensional fifth-order KdV system under a new resonance condition called velocity resonance in theory. On the basis of soliton molecules, asymmetric solitons can be obtained by selecting appropriate parameters. Based on the $N$-soliton solution, we obtain hybrid solutions consisting of soliton molecules, lump waves and breather waves by partial velocity resonance and partial long wave limits. Soliton molecules, and some types of special soliton resonance solutions, are stable under the meaning that the interactions among soliton molecules are elastic. Both soliton molecules and asymmetric solitons obtained may be observed in fluid systems because the fifth-order KdV equation describes the ion-acoustic waves in plasmas, shallow water waves in channels and oceans.
Received: 30 September 2019      Published: 25 November 2019
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11775121, 11805106 and 11435005, and K.C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/120501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao Zhang
Shu-Xin Yang
Biao Li
[1]Wazwaz A M 2017 Nonlinear Dyn. 87 1685
[2]Peng W Q, Tian S F and Zhang T T 2018 Phys. Lett. A 382 2701
[3]Lou S Y and Lin J 2018 Chin. Phys. Lett. 35 050202
[4]Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[5]Chen M D, Li X, Wang Y and Li B 2017 Commun. Theor. Phys. 67 595
[6]Chen J C, Ma Z Y and Hu Y H 2017 Chin. Phys. Lett. 34 010201
[7]Syam M, Jaradat H M and Alquran M 2017 Nonlinear Dyn. 90 1363
[8]Wazwaz A M 2017 Math. Methods Appl. Sci. 40 4128
[9]Batwa S and Ma W X 2018 Adv. Math. Phys. 2018 2062398
[10]Hong W P and Jung Y D 1999 Z. Naturforsch. 54a 375
[11]Cao Y L, He J S and Mihalache D 2018 Nonlinear Dyn. 91 2593
[12]Liu Y K, Li B and An H L 2018 Nonlinear Dyn. 92 2061
[13]Lakomy K, Nath R and Santos L 2012 Phys. Rev. E 86 013610
[14]Herink G, Kurtz F, Jalali B, Solli D and Ropers C 2017 Science 356 50
[15]Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[16]Lou S Y 2019 arXiv:1909.03399
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 120501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 120501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 120501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 120501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 120501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 120501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 120501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 120501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 120501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 120501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 120501
Viewed
Full text


Abstract