Chin. Phys. Lett.  2019, Vol. 36 Issue (12): 120601    DOI: 10.1088/0256-307X/36/12/120601
GENERAL |
Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock
Si-Jia Chao1,2,3, Kai-Feng Cui1,2, Shao-Mao Wang1,2,3, Jian Cao1,2**, Hua-Lin Shu1,2**, Xue-Ren Huang1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Key Laboratory of Atom Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang et al  2019 Chin. Phys. Lett. 36 120601
Download: PDF(576KB)   PDF(mobile)(566KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the realization of quantum logic spectroscopy on the $^1\!S_0\rightarrow {}^3\!P_0$ clock transition of a single $^{27}$Al$^+$ ion. This ion is trapped together with a $^{40}$Ca$^+$ ion in a linear Paul trap, coupled by Coulomb repulsion, which provides sympathetic Doppler laser cooling and also the means for internal state detection of the clock state of the $^{27}$Al$^+$ ion. A repetitive quantum nondemolition measurement is performed to improve the fidelity of state detection. These techniques are applied to obtain clock spectroscopy at approximately 45 Hz. We also perform the preliminary locking on the $^1\!S_0\rightarrow {}^3\!P_0$ clock transition. Our work is a fundamental step that is necessary toward obtaining an ultra-precision quantum logic clock based on $^{40}$Ca$^+$-$^{27}$Al$^+$ ions.
Received: 09 September 2019      Published: 25 November 2019
PACS:  06.30.Ft (Time and frequency)  
  32.30.Jc (Visible and ultraviolet spectra)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0304401, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030100, and the Technical Innovation Program of Hubei Province under Grant No 2018AAA045.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/12/120601       OR      https://cpl.iphy.ac.cn/Y2019/V36/I12/120601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Jia Chao
Kai-Feng Cui
Shao-Mao Wang
Jian Cao
Hua-Lin Shu
Xue-Ren Huang
[1]Huntemann N, Lipphardt B, Tamm Chr, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802
[2]Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard X, Fouché M and Le Targat R et al 2008 Phys. Rev. Lett. 100 140801
[3]Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[4]Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[5]Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[6]Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J et al 2017 Science 358 90
[7]McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M et al 2018 Nature 564 87
[8]Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J and Mehlstäubler T E 2019 Phys. Rev. A 99 013405
[9]Huntemann N, Sanner C, Lipphardt B et al 2016 Phys. Rev. Lett. 116 063001
[10]Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[11]Dehmelt H G 1982 IEEE Trans. Instrum. Meas. IM-31 83
[12]Yu N, Dehmelt H and Nagourney W 1992 Proc. Natl. Acad. Sci. USA 89 7289
[13]Safronova M S, Kozlov M G and Clark C W 2011 Phys. Rev. Lett. 107 143006
[14]Wineland D J, Bergquist J C, Bollinger J J, Drullinger R E and Itano W M 2002 World Scientific 361
[15]Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[16]Rosenband T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J, Bergquist J C et al 2007 Phys. Rev. Lett. 98 220801
[17]Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002
[18]Ksenia K, Ilia Z, Ilya S, Alexander B, Nikolay K 2018 European Frequency and Time Forum (Turin, Italy 10–12 April 2018) p 377
[19]Liu H L, Xu Z T, Ma Z Y, Wei W Z, Hao P, Yuan W H, Che H, Cheng F H, Wang Z Y, Deng K et al 2019 arXiv:1902.09716
[20]Guggemos M, Heinrich D, Herrera-Sancho O A, Blatt R and Roos C F 2015 New J. Phys. 17 103001
[21]Hannig S, Pelzer L, Scharnhorst N, Kramer J, Stepanova M, Xu Z T, Spethmann N, Leroux I D, Mehlstäubler T E and Schmidt P O 2019 Rev. Sci. Instrum. 90 053204
[22]Shang J J, Cui K F, Cao J, Wang S M, Chao S J, Shu H L and Huang X R 2016 Chin. Phys. Lett. 33 103701
[23]Wübbena J B, Amairi S, Mandel O and Schmidt P O 2012 Phys. Rev. A 85 043412
[24]Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H and Huang X 2017 Appl. Phys. B 123 112
[25]Cui K F, Shang J J, Chao S J, Wang S M, Yuan J b, Zhang P, Cao J, Shu H L and Huang X R 2018 J. Phys. B 51 045502
[26]Hume D B, Rosenband T and Wineland D J 2007 Phys. Rev. Lett. 99 120502
[27]Turchette Q A, Kielpinski D, King B E et al 2000 Phys. Rev. A 61 063418
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 120601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 120601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 120601
[4] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 120601
[5] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 120601
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 120601
[7] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 120601
[8] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 120601
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 120601
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 120601
[11] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 120601
[12] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 120601
[13] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 120601
[14] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 120601
[15] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 120601
Viewed
Full text


Abstract