GENERAL |
|
|
|
|
Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock |
Si-Jia Chao1,2,3, Kai-Feng Cui1,2, Shao-Mao Wang1,2,3, Jian Cao1,2**, Hua-Lin Shu1,2**, Xue-Ren Huang1,2** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Key Laboratory of Atom Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang et al 2019 Chin. Phys. Lett. 36 120601 |
|
|
Abstract We report the realization of quantum logic spectroscopy on the $^1\!S_0\rightarrow {}^3\!P_0$ clock transition of a single $^{27}$Al$^+$ ion. This ion is trapped together with a $^{40}$Ca$^+$ ion in a linear Paul trap, coupled by Coulomb repulsion, which provides sympathetic Doppler laser cooling and also the means for internal state detection of the clock state of the $^{27}$Al$^+$ ion. A repetitive quantum nondemolition measurement is performed to improve the fidelity of state detection. These techniques are applied to obtain clock spectroscopy at approximately 45 Hz. We also perform the preliminary locking on the $^1\!S_0\rightarrow {}^3\!P_0$ clock transition. Our work is a fundamental step that is necessary toward obtaining an ultra-precision quantum logic clock based on $^{40}$Ca$^+$-$^{27}$Al$^+$ ions.
|
|
Received: 09 September 2019
Published: 25 November 2019
|
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0304401, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB21030100, and the Technical Innovation Program of Hubei Province under Grant No 2018AAA045. |
|
|
[1] | Huntemann N, Lipphardt B, Tamm Chr, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett. 113 210802 | [2] | Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard X, Fouché M and Le Targat R et al 2008 Phys. Rev. Lett. 100 140801 | [3] | Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 | [4] | Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043 | [5] | Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630 | [6] | Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J et al 2017 Science 358 90 | [7] | McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M et al 2018 Nature 564 87 | [8] | Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J and Mehlstäubler T E 2019 Phys. Rev. A 99 013405 | [9] | Huntemann N, Sanner C, Lipphardt B et al 2016 Phys. Rev. Lett. 116 063001 | [10] | Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 | [11] | Dehmelt H G 1982 IEEE Trans. Instrum. Meas. IM-31 83 | [12] | Yu N, Dehmelt H and Nagourney W 1992 Proc. Natl. Acad. Sci. USA 89 7289 | [13] | Safronova M S, Kozlov M G and Clark C W 2011 Phys. Rev. Lett. 107 143006 | [14] | Wineland D J, Bergquist J C, Bollinger J J, Drullinger R E and Itano W M 2002 World Scientific 361 | [15] | Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749 | [16] | Rosenband T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J, Bergquist J C et al 2007 Phys. Rev. Lett. 98 220801 | [17] | Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002 | [18] | Ksenia K, Ilia Z, Ilya S, Alexander B, Nikolay K 2018 European Frequency and Time Forum (Turin, Italy 10–12 April 2018) p 377 | [19] | Liu H L, Xu Z T, Ma Z Y, Wei W Z, Hao P, Yuan W H, Che H, Cheng F H, Wang Z Y, Deng K et al 2019 arXiv:1902.09716 | [20] | Guggemos M, Heinrich D, Herrera-Sancho O A, Blatt R and Roos C F 2015 New J. Phys. 17 103001 | [21] | Hannig S, Pelzer L, Scharnhorst N, Kramer J, Stepanova M, Xu Z T, Spethmann N, Leroux I D, Mehlstäubler T E and Schmidt P O 2019 Rev. Sci. Instrum. 90 053204 | [22] | Shang J J, Cui K F, Cao J, Wang S M, Chao S J, Shu H L and Huang X R 2016 Chin. Phys. Lett. 33 103701 | [23] | Wübbena J B, Amairi S, Mandel O and Schmidt P O 2012 Phys. Rev. A 85 043412 | [24] | Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H and Huang X 2017 Appl. Phys. B 123 112 | [25] | Cui K F, Shang J J, Chao S J, Wang S M, Yuan J b, Zhang P, Cao J, Shu H L and Huang X R 2018 J. Phys. B 51 045502 | [26] | Hume D B, Rosenband T and Wineland D J 2007 Phys. Rev. Lett. 99 120502 | [27] | Turchette Q A, Kielpinski D, King B E et al 2000 Phys. Rev. A 61 063418 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|