Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 110701    DOI: 10.1088/0256-307X/36/11/110701
GENERAL |
Direct ZnO X-Ray Detector with Tunable Sensitivity
Hui-Li Liang1**, Shu-Juan Cui1,2, Wen-Xing Huo1,2, Tao Wang1,2, Yong-Hui Zhang1,2, Bao-Gang Quan3, Xiao-Long Du1,2,4, Zeng-Xia Mei1**
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Hui-Li Liang, Shu-Juan Cui, Wen-Xing Huo et al  2019 Chin. Phys. Lett. 36 110701
Download: PDF(986KB)   PDF(mobile)(976KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Direct ZnO x-ray detectors with tunable sensitivity are realized by delicately controlling the oxygen flux during the sputtering deposition process. The photocurrents induced by x-rays from a 40 kV x-ray tube with a Cu anode increase apparently as the oxygen flux decreases, which is attributed to the introduction of $V_{\rm o}$ detects. By introducing $V_{\rm o}$ defects, the annihilation rate of the photo-generated electron-hole pairs will be greatly slowed down, leading to a remarkable photoconductive gain. This finding informs a novel way to design the x-ray detectors based on abundant oxide materials.
Received: 20 May 2019      Published: 21 October 2019
PACS:  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
  71.55.Gs (II-VI semiconductors)  
  29.40.Wk (Solid-state detectors)  
  81.15.Cd (Deposition by sputtering)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11675280, 11674405, 61874139 and 11875088.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/110701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/110701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Li Liang
Shu-Juan Cui
Wen-Xing Huo
Tao Wang
Yong-Hui Zhang
Bao-Gang Quan
Xiao-Long Du
Zeng-Xia Mei
[1]Guazzoni C 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 624 247
[2]Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A and Rowlands J A 2009 Phys. Status Solidi B 246 1794
[3]Sordo S D, Abbene L, Caroli E, Mancini A M, Zappettini A and Ubertini P 2009 Sensors 9 3491
[4]Sun H, Zhu X H, Yang D Y, Wangyang P H, Tian H B and Gao X Y 2016 IEEE Trans. Nucl. Sci. 63 1790
[5]Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y and Park N G 2017 Nature 550 87
[6]Boroum, F A, Zhu M, Dalton A B, Keddie J L, Sellin P J and Gutierrez J J 2007 Appl. Phys. Lett. 91 033509
[7]Duboz J Y, Frayssinet E, Chenot S, Reverchon J L and Idir M 2010 Appl. Phys. Lett. 97 163504
[8]Nava F, Bertuccio G, Cavallini A and Vittone E 2008 E Meas. Sci. Technol. 19 102001
[9]Conte G, Rossi M C, Salvatori S, Ascarelli P and Trucchi D 2004 J. Appl. Phys. 96 6415
[10]Lu X, Zhou L D, Chen L, Ouyang X P, Liu B, Xu J and Tang H L 2018 Appl. Phys. Lett. 112 103502
[11]Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X and Du X L 2019 ACS Photon. 6 351
[12]Zhao X L, Chen L, He Y N, Liu J L, Peng W B, Huang Z Y, Qi X M, Pan Z J, Zhang W T, Zhang Z B and Ouyang X P 2016 Appl. Phys. Lett. 108 171103
[13]Endo H, Chiba T, Meguro K, Takahashi K, Fujisawa M, Sugimura S, Narita S, Kashiwaba Y and Sato E 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 665 15
[14]Zhou L D, Huang Z Y, Zhao X L, He Y N, Chen L, Xu M X, Zhao K, Zhang S C and Ouyang X P 2019 IEEE Photon. Technol. Lett. 31 365
[15]Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502 (in Chinese)
[16]Liu L S, Mei Z X, Tang A H, Azarov A, Kuznetsov A, Xue Q K and Du X L 2016 Phys. Rev. B 93 235305
[17]Tang A H, Mei Z X, Huo W X and Du X L 2018 Sci. Chin.-Phys. Mech. Astron. 61 117321
[18]Monakhov E V, Kuznetsov A Y and Svensson B G 2009 J. Phys. D 42 153001
[19]Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501
[20]Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[21]Hu W J, Paudel T R, Lopatin S, Wang Z, Ma H, Wu K, Bera A, Yuan G, Gruverman A, Tsymbal E Y and Wu T 2018 Adv. Funct. Mater. 28 1704337
Related articles from Frontiers Journals
[1] Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang, Yu-Fei Feng, Zhan-Shan Wang, Zi-Hua Xin. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors[J]. Chin. Phys. Lett., 2019, 36(12): 110701
[2] M. P. Sarma, J. M. Kalita, G. Wary. X-Ray Radiation Sensing Properties of ZnS Thin Film: A Study on the Effect of Annealing[J]. Chin. Phys. Lett., 2017, 34(7): 110701
[3] YANG Zu-Hua, ZHAO Zong-Qing, WEI Lai, ZHANG Qiang-Qiang, QIAN Feng, GU Yu-Qiu, CAO Lei-Feng. Design of Elliptical Reflection Zone Plate for Monochromatization of the Ultrafast Betatron Radiation at Low Energy Band[J]. Chin. Phys. Lett., 2014, 31(05): 110701
[4] Nassima Seghairi, Badis Bendjemil, Gabriel Lavorato, Alberto Castellero, Marcello Baricco. Preparation and Characterization of Fe-Based Metallic Glasses with Pure and Raw Elements[J]. Chin. Phys. Lett., 2012, 29(11): 110701
[5] Badis Bendjemil, Abderrezak Bouchareb, Ahmed Belbah, Jamel Bougdira, Rafael Piccin, Marcello Baricco. Crystallization Behavior of Fe50?xCr15Mo14C15B6Mx (x=0, 2 and M = Y, Gd) Bulk Metallic Glasses and Ribbons by in situ High Temperature X-Ray Diffraction[J]. Chin. Phys. Lett., 2012, 29(10): 110701
[6] LI Miao, XIAO Sha-Li, ZHANG Liu-Qiang, CAO Yu-Lin, CHEN Yu-Xiao, SHEN Min, WANG Xi. Investigation of the Imaging Polarization Effect Based on a Pixellated CdZnTe Detector[J]. Chin. Phys. Lett., 2010, 27(7): 110701
[7] MA Jie, XIE Chang-Qing, LIU Ming, CHEN Bao-Qin, YE Tian-Chun. Design, Fabrication and Test of a Soft X-Ray Even-Order Transmission Grating[J]. Chin. Phys. Lett., 2009, 26(9): 110701
[8] ZHANG Zhong, WANG Zhan-Shan, ZHU Jing-Tao, WU Yong-Rong, MU Bao-Zhong, WANG Feng-Li, QIN Shu-Ji, CHEN Ling-Yan. Design, Fabrication and Measurement of Ni/Ti Multilayer Used for Neutron Monochromator[J]. Chin. Phys. Lett., 2007, 24(12): 110701
[9] ZHANG Zhong, WANG Zhan-Shan, ZHU Jing-Tao, WANG Feng-Li, WU Yong-Rong, QIN Shu-Ji, CHEN Ling-Yan. Design and Fabrication of Ni/Ti Multilayer for Neutron Supermirror[J]. Chin. Phys. Lett., 2006, 23(10): 110701
[10] WANG Kai-Ge, WANG Lei, LIU Wen-Qing, NIU Han-Ben. Monte Carlo Study on Focus Properties of Portable Ultrabright Microfocus X-Ray Sources[J]. Chin. Phys. Lett., 2006, 23(9): 110701
[11] ZHANG Zhong, WANG Zhan-Shan, WANG Feng-Li, WU Wen-Juan, WANG Hong-Chang, QIN Shu-Ji, CHEN Ling-Yan. Design and Fabrication of Broad Angular Response Supermirror for Hard X-Ray Optics[J]. Chin. Phys. Lett., 2005, 22(10): 110701
[12] ZHANG Zhong, WANG Zhan-Shan, WANG Feng-Li, QIN Shu-Ji, CHEN Ling-Yan. Design of Grazing-Incidence Broad-Band Multilayers for Hard X-Ray Reflectors[J]. Chin. Phys. Lett., 2004, 21(12): 110701
[13] SUN Yu-Jie, CHENG Yao, WANG Feng, LI Jia-Ming,. Can a Single-Wall Carbon Nanotube be an X-Ray Waveguide?[J]. Chin. Phys. Lett., 2004, 21(3): 110701
[14] YU Hong, ZHU Pin-Pin, HAN Shen-Sheng, LUO Zhen-Lin, GAO Chen. In-Line Phase-Contrast Imaging Using Partially Coherent Hard X-Ray[J]. Chin. Phys. Lett., 2003, 20(2): 110701
[15] GOU Quan-Bu, DONG Xiao-Li, LI Zu-Hao, ZHU Guo-Yi, HE Jing-Tang, TANG Xiao-Wei. Great Scintillating Properties of a YAP:Ce Crystal[J]. Chin. Phys. Lett., 2002, 19(7): 110701
Viewed
Full text


Abstract