GENERAL |
|
|
|
|
Direct ZnO X-Ray Detector with Tunable Sensitivity |
Hui-Li Liang1**, Shu-Juan Cui1,2, Wen-Xing Huo1,2, Tao Wang1,2, Yong-Hui Zhang1,2, Bao-Gang Quan3, Xiao-Long Du1,2,4, Zeng-Xia Mei1** |
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 3Laboratory of Microfabrication, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 4Songshan Lake Materials Laboratory, Dongguan 523808
|
|
Cite this article: |
Hui-Li Liang, Shu-Juan Cui, Wen-Xing Huo et al 2019 Chin. Phys. Lett. 36 110701 |
|
|
Abstract Direct ZnO x-ray detectors with tunable sensitivity are realized by delicately controlling the oxygen flux during the sputtering deposition process. The photocurrents induced by x-rays from a 40 kV x-ray tube with a Cu anode increase apparently as the oxygen flux decreases, which is attributed to the introduction of $V_{\rm o}$ detects. By introducing $V_{\rm o}$ defects, the annihilation rate of the photo-generated electron-hole pairs will be greatly slowed down, leading to a remarkable photoconductive gain. This finding informs a novel way to design the x-ray detectors based on abundant oxide materials.
|
|
Received: 20 May 2019
Published: 21 October 2019
|
|
PACS: |
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
29.40.Wk
|
(Solid-state detectors)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11675280, 11674405, 61874139 and 11875088. |
|
|
[1] | Guazzoni C 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 624 247 | [2] | Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A and Rowlands J A 2009 Phys. Status Solidi B 246 1794 | [3] | Sordo S D, Abbene L, Caroli E, Mancini A M, Zappettini A and Ubertini P 2009 Sensors 9 3491 | [4] | Sun H, Zhu X H, Yang D Y, Wangyang P H, Tian H B and Gao X Y 2016 IEEE Trans. Nucl. Sci. 63 1790 | [5] | Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y and Park N G 2017 Nature 550 87 | [6] | Boroum, F A, Zhu M, Dalton A B, Keddie J L, Sellin P J and Gutierrez J J 2007 Appl. Phys. Lett. 91 033509 | [7] | Duboz J Y, Frayssinet E, Chenot S, Reverchon J L and Idir M 2010 Appl. Phys. Lett. 97 163504 | [8] | Nava F, Bertuccio G, Cavallini A and Vittone E 2008 E Meas. Sci. Technol. 19 102001 | [9] | Conte G, Rossi M C, Salvatori S, Ascarelli P and Trucchi D 2004 J. Appl. Phys. 96 6415 | [10] | Lu X, Zhou L D, Chen L, Ouyang X P, Liu B, Xu J and Tang H L 2018 Appl. Phys. Lett. 112 103502 | [11] | Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X and Du X L 2019 ACS Photon. 6 351 | [12] | Zhao X L, Chen L, He Y N, Liu J L, Peng W B, Huang Z Y, Qi X M, Pan Z J, Zhang W T, Zhang Z B and Ouyang X P 2016 Appl. Phys. Lett. 108 171103 | [13] | Endo H, Chiba T, Meguro K, Takahashi K, Fujisawa M, Sugimura S, Narita S, Kashiwaba Y and Sato E 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 665 15 | [14] | Zhou L D, Huang Z Y, Zhao X L, He Y N, Chen L, Xu M X, Zhao K, Zhang S C and Ouyang X P 2019 IEEE Photon. Technol. Lett. 31 365 | [15] | Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502 (in Chinese) | [16] | Liu L S, Mei Z X, Tang A H, Azarov A, Kuznetsov A, Xue Q K and Du X L 2016 Phys. Rev. B 93 235305 | [17] | Tang A H, Mei Z X, Huo W X and Du X L 2018 Sci. Chin.-Phys. Mech. Astron. 61 117321 | [18] | Monakhov E V, Kuznetsov A Y and Svensson B G 2009 J. Phys. D 42 153001 | [19] | Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 | [20] | Lany S and Zunger A 2005 Phys. Rev. B 72 035215 | [21] | Hu W J, Paudel T R, Lopatin S, Wang Z, Ma H, Wu K, Bera A, Yuan G, Gruverman A, Tsymbal E Y and Wu T 2018 Adv. Funct. Mater. 28 1704337 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|