GENERAL |
|
|
|
|
Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration |
Qian Dong1, M. A. Mercado Sanchez1, Guo-Hua Sun2, Mohamad Toutounji3, Shi-Hai Dong1** |
1Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico 2Catedrática CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico 3Department of Chemistry, P. O. Box 15551, UAE University, Al Ain, UAE
|
|
Cite this article: |
Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun et al 2019 Chin. Phys. Lett. 36 100301 |
|
|
Abstract Using the single-mode approximation, we study entanglement measures including two independent quantities; i.e., negativity and von Neumann entropy for a tripartite generalized Greenberger–Horne–Zeilinger (GHZ) state in noninertial frames. Based on the calculated negativity, we study the whole entanglement measures named as the algebraic average $\pi_{3}$-tangle and geometric average ${\it \Pi}_{3}$-tangle. We find that the difference between them is very small or disappears with the increase of the number of accelerated qubits. The entanglement properties are discussed from one accelerated observer and others remaining stationary to all three accelerated observers. The results show that there will always exist entanglement, even if acceleration $r$ arrives to infinity. The degree of entanglement for all 1–1 tangles are always equal to zero, but 1–2 tangles always decrease with the acceleration parameter $r$. We notice that the von Neumann entropy increases with the number of the accelerated observers and $S_{\kappa_{\rm I}\zeta_{\rm I}}$ ($\kappa, \zeta\in ({\rm A, B, C})$) first increases and then decreases with the acceleration parameter $r$. This implies that the subsystem $\rho_{\kappa_{\rm I}\zeta_{\rm I}}$ is first more disorder and then the disorder will be reduced as the acceleration parameter $r$ increases. Moreover, it is found that the von Neumann entropies $S_{\rm ABCI}$, $S_{\rm ABICI}$ and $S_{\rm AIBICI}$ always decrease with the controllable angle $\theta$, while the entropies of the bipartite subsystems $S_{2-2_{\rm non}}$ (two accelerated qubits), $S_{2-1_{\rm non}}$ (one accelerated qubit) and $S_{2-0_{\rm non}}$ (without accelerated qubit) first increase with the angle $\theta$ and then decrease with it.
|
|
Received: 20 June 2019
Published: 21 September 2019
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
|
Fund: Supported by the CONACYT of Mexico under Grant No 288856-CB-2016, and the 20190234-SIP-IPN of Mexico. |
|
|
[1] | Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 | [2] | Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 | [3] | Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446 | [4] | Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) | [5] | Werner R F 1989 Phys. Rev. A 40 4277 | [6] | Gühne O and Tóth G 2009 Phys. Rep. 474 1 | [7] | Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 | [8] | Peres A 1996 Phys. Rev. Lett. 76 1413 | [9] | Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883 | [10] | Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788 | [11] | Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 | [12] | Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 | [13] | Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619 | [14] | Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075 | [15] | Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562 | [16] | Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385 | [17] | Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 | [18] | Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326 | [19] | Montero M, León J and Martínez M 2011 Phys. Rev. A 84 042320 | [20] | Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys. 51 787 | [21] | Metwally N 2013 Int. J. Mod. Phys. B 27 1350155 | [22] | Torres-Arenas A J, López-Zúñiga E O, Saldaña-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301 | [23] | Dong Q, Sanchez M A A, Yáñez I L, Sun G H and Dong S H 2019 Phys. Scr. 94 105101 | [24] | Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 | [25] | Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM J. Comput. 26 1411 | [26] | Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag) | [27] | Smith A and Mann R B 2012 Phys. Rev. A 86 012306 | [28] | Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 | [29] | Wang J and Jiang J 2011 Phys. Rev. A 83 022314 | [30] | Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711.04230v1 | [31] | Wang J and Jiang J 2018 Phys. Rev. A 97 029902 | [32] | Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111 | [33] | Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336 | [34] | Khan S 2014 Ann. Phys. 348 270 | [35] | Khan S, Khan N A and Khan M K 2014 Commun. Theor. Phys. 61 281 | [36] | Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026 | [37] | Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306 | [38] | Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys. 326 1320 | [39] | Park D K 2016 Quantum Inf. Process. 15 3189 | [40] | Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B 789 93 | [41] | Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Inf. Process. 18 314 | [42] | Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Front. Phys. 14 21603 | [43] | Sharma K K and Pandey S N 2016 Quantum Inf. Process. 15 4995 | [44] | Park D 2012 J. Phys. A 45 415308 | [45] | Eltschka C, Osterloh A, Siewert J and Uhlmann A 2008 New J. Phys. 10 043014 | [46] | Zhao J L, Zhang Y D and Yang M 2018 Acta Phys. Sin. 67 140302 (in Chinese) | [47] | Socolovsky M 2013 arXiv:1304.2833v2 | [48] | Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information (Singapore: World Scientific) | [49] | Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 | [50] | Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D 82 064006 | [51] | Williams C P 2010 Explorations in Quantum Computing (New York: Springer) | [52] | Oliveira D S and Ramos R V 2010 Quantum Inf. Process. 9 497 | [53] | Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435 | [54] | von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (New Jersey: Princeton University Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|