Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 100302    DOI: 10.1088/0256-307X/36/10/100302
GENERAL |
Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier
Yu Mao1, Qi Liu2, Ying Guo3, Hang Zhang1, Jian Zhou3**
1School of Automation, Central South University, Changsha 410083
2College of Science, Central South University of Forestry and Technology, Changsha 410004
3School of Computer Science and Engineering, Central South University, Changsha 410083
Cite this article:   
Yu Mao, Qi Liu, Ying Guo et al  2019 Chin. Phys. Lett. 36 100302
Download: PDF(1038KB)   PDF(mobile)(1031KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We characterize a modified continuous-variable quantum key distribution (CV-QKD) protocol with four states in the middle of a quantum channel. In this protocol, two noiseless linear amplifiers (NLAs) are inserted before each detector of the two parts, Alice and Bob, with the purpose of increasing the secret key rate and the maximum transmission distance. We present the performance analysis of the new four-state CV-QKD protocol over a Gaussian lossy and noisy channel. The simulation results show that the NLAs with a reasonable gain $g$ can effectively enhance the secret key rate as well as the maximum transmission distance, which is generally satisfied in practice.
Received: 20 April 2019      Published: 21 September 2019
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61572529.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/100302       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/100302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Mao
Qi Liu
Ying Guo
Hang Zhang
Jian Zhou
[1]Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2]Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. p 175
[3]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4]Wang S, Chen W et al 2018 Opt. Lett. 43 2030
[5]Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Sci. Technol. 3 025006
[6]Cui C H, Yin Z Q, Wang R, Chen W, Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[7]García-Patrón R and Cerf N J 2009 Phys. Rev. Lett. 102 130501
[8]Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[9]Gottesman D and Preskill J 2001 Phys. Rev. A 63 022309
[10]Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C et al 2015 Nat. Photon. 9 397
[11]Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
[12]Leverrier A 2017 Phys. Rev. Lett. 118 200501
[13]Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[14]Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
[15]Liao Q, Guo Y, Huang D, Huang P and Zeng G H 2018 New J. Phys. 20 023015
[16]Ghorai S, Grangier P, Diamanti E and Leverrier A 2019 Phys. Rev. X 9 021059
[17]Weedbrook C 2013 Phys. Rev. A 87 022308
[18]Fossier S, Diamanti E, Debuisschert T, Villing A, TualleBrouri R and Grangier P 2009 New J. Phys. 11 045023
[19]Ralph T C and Lund A P 2009 AIP Conf. Proc. 1110 155
[20]Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
[21]Yang J, Xu B, Peng X and Guo H 2012 Phys. Rev. A 85 052302
[22]Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[23]Zhang H, Fang J and He G Q 2012 Phys. Rev. A 86 022338
[24]Ferreyrol F, Blandino R, Barbieri M, Tualle-Brouri R and Grangier P 2011 Phys. Rev. A 83 063801
[25]Yang F L, Guo Y, Shi J J, Wang H L and Pan J J 2017 Chin. Phys. B 26 100303
[26]Wang X Y, Zhang Y C, Li Z Y, Xu B J, Yu S and Guo H 2018 arXiv:1703.04916v2
[27]Milicevic M, Feng C, Zhang L M and Gulak P G 2018 npj Quantum Inf. 4 21
[28]Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S and Guo H 2015 Entropy 17 4547
[29]Bernu J, Armstrong S, Symul T, Ralph T C and Lam P K 2014 J. Phys. B 47 215503
[30]Xu B J, Tang C M, Chen H, Zhang W Z and Zhu F C 2013 Phys. Rev. A 87 062311
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 100302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 100302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 100302
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 100302
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 100302
[6] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 100302
[7] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 100302
[8] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 100302
[9] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 100302
[10] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 100302
[11] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 100302
[12] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 100302
[13] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 100302
[14] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 100302
[15] Min Xiao, Yun-Ru Cao, Xiu-Li Song. Efficient and Secure Authenticated Quantum Dialogue Protocols over Collective-Noise Channels[J]. Chin. Phys. Lett., 2017, 34(3): 100302
Viewed
Full text


Abstract