CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates |
Qing-feng Wu, Sheng Cao**, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang |
National Institute of LED on Si Substrate, Nanchang University, Nanchang 330096
|
|
Cite this article: |
Qing-feng Wu, Sheng Cao, Chun-lan Mo et al 2018 Chin. Phys. Lett. 35 098501 |
|
|
Abstract Effect of hydrogen (H$_2$) treatment during the GaN barrier growth on the electroluminescence performance of green InGaN/GaN single-quantum-well light-emitting diodes (LEDs) grown on Si substrates is experimentally investigated. We prepare two LED samples with different carrier gas compositions during the growth of GaN barrier. In the H$_2$ free LED, the GaN barrier is grown in full nitrogen (N$_2$) atmosphere. For the other H$_2$ treated LED, a mixture of N$_2$ and H$_2$ was used as the carrier gas. It is observed that V-shaped pits decrease in size after H$_2$ treatment by means of the scanning electron microscope. Due to the fact that the p-n junction interface would be closer to the p-GaN as a result of smaller V-shaped pits, the tunneling barrier for holes to inject into the InGaN quantum well would become thicker after H$_2$ treatment. Hence, the external quantum efficiency of the H$_2$ treated LED is lower compared to the H$_2$ free LED. However, LEDs would exhibit a better leakage behavior after H$_2$ treatment during the GaN barrier growth because of more effective blocking of the threading dislocations as a result of the H$_2$ etching at V-shaped pits.
|
|
Received: 21 May 2018
Published: 29 August 2018
|
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant Nos 2016YFB0400600 and 2016YFB0400601, the State Key Program of the National Natural Science Foundation of China under Grant No 61334001, the National Natural Science Foundation of China under Grant Nos 21405076, 11674147, 61604066, 51602141 and 11604137, the Key Technology Research and Development Program of Jiangxi Province under Grant Nos 20165ABC28007 and 20171BBE50052, and Jiangxi Province Postdoctoral Science Foundation Funded Project under Grant No 2015KY32. |
|
|
[1] | Suihkonen S et al 2007 J. Cryst. Growth 300 324 | [2] | Zhou X R et al 2017 Nanoscale Res. Lett. 12 354 | [3] | Czernecki R et al 2015 J. Cryst. Growth 414 38 | [4] | Suihkonen S et al 2007 J. Cryst. Growth 298 740 | [5] | Le L C et al 2012 Appl. Phys. Lett. 101 252110 | [6] | Quan Z J et al 2015 J. Appl. Phys. 118 193102 | [7] | Quan Z J et al 2014 J. Appl. Phys. 116 183107 | [8] | Mo C L et al 2005 J. Cryst. Growth 285 312 | [9] | Liu J L et al 2011 Appl. Phys. Lett. 99 111112 | [10] | Wang G X et al 2015 Semicond. Sci. Technol. 30 015018 | [11] | Harbers G et al 2007 J. Disp. Technol. 3 160 | [12] | Ren P et al 2016 J. Phys. D 49 175101 | [13] | Moon Y T et al 2000 J. Vac. Sci. Technol. B 18 2631 | [14] | Shen Y C et al 2007 Appl. Phys. Lett. 91 141101 | [15] | Kim M H et al 2007 Appl. Phys. Lett. 91 183507 | [16] | Mártil I et al 1997 J. Appl. Phys. 81 2442 | [17] | Jia C et al 2013 Opt. Express 21 8444 | [18] | Niu N H et al 2007 Solid-State Electron. 51 860 | [19] | Leyer M et al 2008 J. Cryst. Growth 310 4913 | [20] | Qi W J et al 2017 J. Appl. Phys. 122 084504 | [21] | Czernecki R et al 2014 J. Cryst. Growth 402 330 | [22] | Morishita Y et al 1995 Appl. Phys. Lett. 67 2500 | [23] | Zhang Y P et al 2017 Appl. Phys. Lett. 110 033506 | [24] | Chitnis A, Kumar A, Shatalov M, Adivarahan V, Lunev A, Yang J W, Simin G, Khan M A, Gaska R and Shur M 2000 Appl. Phys. Lett. 77 3800 | [25] | Cao X A, Stokes E B, Sandvik P M, Leboeuf S F et al 2002 IEEE Electron Device Lett. 23 535 | [26] | Shan Q F, Meyaard D S, Dai Q, Cho J, Schubert E F, Son J K and Sone C 2011 Appl. Phys. Lett. 99 253506 | [27] | Kim J, Kim J, Tak Y, Chae S, Kim J Y and Park Y 2013 IEEE Electron Device Lett. 34 1409 | [28] | Han S H , Lee D Y , Shim H W , Lee J W, Kim D J , Yoon S, Kim Y S and Kim S T 2013 Appl. Phys. Lett. 102 251123 | [29] | Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402 | [30] | Yeh Y H, Chen K M, Wu Y H, Hsu Y C, Yu T Y and Lee W I 2011 J. Cryst. Growth 333 16 | [31] | Yeh Y H, Chen K M, Wu Y H, Hsu Y C and Lee W I 2011 J. Cryst. Growth 314 9 | [32] | Ren X C, Riley J R, Koleske D D and Lauhon L J 2015 Appl. Phys. Lett. 107 022107 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|