Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 093201    DOI: 10.1088/0256-307X/35/9/093201
ATOMIC AND MOLECULAR PHYSICS |
Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms
Yi-Hong Li1, Shao-Hua Li1, Jin-Peng Yuan1,2**, Li-Rong Wang1,2**, Lian-Tuan Xiao1,2, Suo-Tang Jia1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan et al  2018 Chin. Phys. Lett. 35 093201
Download: PDF(734KB)   PDF(mobile)(727KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Double resonance optical pumping spectroscopy has an outstanding advantage of high signal-to-noise ratio, thus having potential applications in precision measurement. With the counter propagated 780 nm and 776 nm laser beams acting on a rubidium vapor cell, the high resolution spectrum of $5S_{1/2}-5P_{3/2}-5D_{5/2}$ ladder-type transition of $^{87}$Rb atoms is obtained by monitoring the population of the $5S_{1/2}$ ground state. The dependence of the spectroscopy lineshape on the probe and coupling fields are comprehensively studied in theory and experiment. This research is helpful for measurement of fundamental physical constants by high resolution spectroscopy.
Received: 22 May 2018      Published: 29 August 2018
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.70.Fw (Absolute and relative intensities)  
  32.70.Jz (Line shapes, widths, and shifts)  
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0304203, the National Natural Science Foundation of China under Grant Nos 61575116, 61705122, 61728502, 91736209 and 11434007, the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076, the Program for Sanjin Scholars of Shanxi Province, the Applied Basic Research Project of Shanxi Province under Grant No 201701D221004, and the Fund for Shanxi '1331 Project' Key Subjects Construction.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/093201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/093201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Hong Li
Shao-Hua Li
Jin-Peng Yuan
Li-Rong Wang
Lian-Tuan Xiao
Suo-Tang Jia
[1]Argence B, Chanteau B, Lopez O, Nicolodi D, Abgrall M, Chardonnet C, Daussy C, Darquié B, Coq Y L and Amy-Klein A 2015 Nat. Photon. 9 456
[2]Riehle F 2017 Nat. Photon. 11 25
[3]Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K and Hu S M 2017 Phys. Rev. Lett. 119 263002
[4]Yan M, Luo P L, Iwakuni K, Millot G, Hänsch T W and Picqué N 2017 Light: Sci. Appl. 6 17076
[5]Ding D S, Zhou Z Y and Shi B S 2012 Chin. Phys. Lett. 29 024202
[6]Tsai C C, Bahns J T, Whang T J, Wang H, Stwalley W C and Lyyra A M 1993 Phys. Rev. Lett. 71 1152
[7]Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[8]Moon H S, Lee W K and Lee L 2004 Appl. Phys. Lett. 85 3965
[9]Lee W K, Moon H S and Suh H S 2007 Opt. Lett. 32 2810
[10]Moon H S, Lee W K and Suh H S 2009 Phys. Rev. A 79 062503
[11]Wang J, Liu H F, Yang G, Yang B D and Wang J M 2014 Phys. Rev. A 90 052505
[12]Yang B D, Zhao J Y, Zhang T C and Wang J M 2009 J. Phys. D 42 085111
[13]Talker E, Stern L, Naiman A, Barash Y and Levy U 2017 J. Phys. Commun. 1 055016
[14]Becerra F E, Willis R T, Rolston S L and Orozco L A 2008 Phys. Rev. A 78 013834
[15]Cao S K, Fan P R, Zhang Y C, Wang L R, Xiao L T and Jia S T 2016 Chin. Phys. Lett. 33 023201
[16]Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201
[17]Li S H, Li Y H, Yuan J P, Wang L R, Xiao L T and Jia S T 2018 Chin. Opt. Lett. 16 060203
[18]Ye J, Swartz S and Jungner P 1996 Opt. Lett. 21 1280
[19]Grove T T, Sanchez-Villicana V, Duncan B C, Maleki S and Gould P L 1995 Phys. Scr. 52 271
[20]Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Opt. Express 25 33580
[21]Shore B W 1990 The Theory of Coherent Atomic Excitation (New York: Wiley-Interscience)
[22]Noh H R and Moon H S 2009 Phys. Rev. A 80 022509
[23]He Z S, Tsai J H, Chang Y Y, Liao C C and Tsai C C 2013 Phys. Rev. A 87 033402
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 093201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 093201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 093201
[4] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 093201
[5] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 093201
[6] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 093201
[7] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 093201
[8] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 093201
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 093201
[10] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 093201
[11] Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser[J]. Chin. Phys. Lett., 2016, 33(02): 093201
[12] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 093201
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 093201
[14] JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan, WANG Li-Rong, MA Jie, ZHAO Yan-Ting, XIAO Lian-Tuan, JIA Suo-Tang. Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb[J]. Chin. Phys. Lett., 2013, 30(10): 093201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 093201
Viewed
Full text


Abstract