Chin. Phys. Lett.  2018, Vol. 35 Issue (9): 090501    DOI: 10.1088/0256-307X/35/9/090501
GENERAL |
Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length
Hong Zhang, Guo-Hua Li**
Department of Mathematics Teaching, Chengdu University of Technology, Chengdu 610059
Cite this article:   
Hong Zhang, Guo-Hua Li 2018 Chin. Phys. Lett. 35 090501
Download: PDF(512KB)   PDF(mobile)(510KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To describe the energy-dependent characteristics of the reaction-subdiffusion process, we analyze the simple reaction A$\rightarrow $B under subdiffsion with waiting time depending on the preceding jump length, and derive the corresponding master equations in the Fourier–Laplace space for the distribution of A and B particles in a continuous time random walk scheme. Moreover, the generalizations of the reaction-diffusion equation for the Gaussian jump length with the probability density function of waiting time being quadratically dependent on the preceding jump length are obtained by applying the derived master equations.
Received: 08 April 2018      Published: 29 August 2018
PACS:  05.40.Fb (Random walks and Levy flights)  
  82.20.-w (Chemical kinetics and dynamics)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11626047, and the Foundation for Young Key Teachers of Chengdu University of Technology under Grant No KYGG201414.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/9/090501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong Zhang
Guo-Hua Li
[1]Sokolov I M, Schmidt M G W and Sagués F 2006 Phys. Rev. E 73 031102
[2]Alhashmi Z, Blunt M J and Bijeljic B 2015 J. Contam. Hydrol. 179 171
[3]Henry B I, Langlands T A M and Wearne S L 2006 Phys. Rev. E 74 031116
[4]Rueangkham N and Modchang C 2016 Chin. Phys. B 25 048201
[5]Lü Y and Bao J D 2011 Phys. Rev. E 84 051108
[6]Metzler R and Klafter J 2000 Phys. Rep. 339 1
[7]Zhang H, Li G H and Luo M K 2013 J. Stat. Phys. 152 1194
[8]Zhang H and Li G H 2016 Chin. Phys. B 25 110504
[9]Henry B I, Langlands T A M and Straka P 2010 Phys. Rev. Lett. 105 170602
[10]Liu J and Chen X S 2016 Eur. Phys. J. B 89 64
[11]Shahmohammadi-Kalalagh S and Beyrami H 2015 Geotech. Geol. Eng. 33 1511
[12]Liu J and Bao J D 2013 Chin. Phys. Lett. 30 020202
[13]Wang J, Zhou J, Lv L J, Qiu W Y and Ren F Y 2014 J. Stat. Phys. 156 1111
[14]Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[15]Liu J, Yang B, Chen X S and Bao J D 2015 Eur. Phys. J. B 88 88
[16]Fa K S and Wang K G 2013 Int. J. Mod. Phys. B 27 1330006
[17]Lin F and Bao J D 2008 Acta Phys. Sin. 57 696 (in Chinese)
[18]Froemberg D and Sokolov I M 2008 Phys. Rev. Lett. 100 108304
[19]Campos D and Méndez V 2009 Phys. Rev. E 80 021133
[20]Abad E, Yuste S B and Lindenberg K 2010 Phys. Rev. E 81 031115
[21]Angstmann C N, Donnelly I C and Henry B I 2013 Math. Model. Nat. Phenom. 8 17
[22]Zaburdaev V Y 2006 J. Stat. Phys. 123 871
[23]Fedotov S and Falconer S 2012 Phys. Rev. E 85 031132
Related articles from Frontiers Journals
[1] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 090501
[2] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 090501
[4] Yang Song, Jing-Dong Bao. Giant Enhancement of Diffusion in a Tilted Egg-Carton Potential[J]. Chin. Phys. Lett., 2016, 33(02): 090501
[5] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 090501
[6] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 090501
[7] LI Jing-Hui. Dilemma Produced by Infinity of a Random Walk[J]. Chin. Phys. Lett., 2015, 32(5): 090501
[8] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 090501
[9] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 090501
[10] XIE Yan-Bo, LI Yu-Jian, LI Ming, XI Zhen-Dong, WANG Bing-Hong. An Exact Numerical Approach to Calculate the First Passage Time for General Random Walks on a Network[J]. Chin. Phys. Lett., 2013, 30(11): 090501
[11] LIU Jian, BAO Jing-Dong. Effective Jump Length of Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2013, 30(2): 090501
[12] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 090501
[13] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 090501
[14] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 090501
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 090501
Viewed
Full text


Abstract