Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 086801    DOI: 10.1088/0256-307X/35/8/086801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates
Yi Gu1,2,6, Hui-Jun Zheng3, Xi-Ren Chen4, Jia-Ming Li2, Tian-Xiao Nie5, Xu-Feng Kou1,2**
1Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210
3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210
4Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083
5Fert Beijing Institute, BDBC, and School of Electronic and Information Engineering, Beihang University, Beijing 100191
6University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yi Gu, Hui-Jun Zheng, Xi-Ren Chen et al  2018 Chin. Phys. Lett. 35 086801
Download: PDF(1270KB)   PDF(mobile)(1262KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the epitaxial growth of single-crystalline CdTe(100) thin films on GaAs(100) substrates using molecular beam epitaxy. By controlling the substrate pre-heated temperature with adjustable Te flux, three different reconstructed surfaces are realized, and their influence on the subsequent CdTe growth is investigated. More importantly, we find that both the presence of a thin native oxide layer and the formation of Ga-As-Te bonds at the interface enable the growth along the (100) orientation and help to reduce the threading dislocations and other defects. Our results provide new opportunities for compound semiconductor heterogeneous growth via interfacial engineering.
Received: 19 March 2018      Published: 15 July 2018
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  78.55.Et (II-VI semiconductors)  
  78.55.-m (Photoluminescence, properties and materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/086801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/086801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi Gu
Hui-Jun Zheng
Xi-Ren Chen
Jia-Ming Li
Tian-Xiao Nie
Xu-Feng Kou
[1]Mohanty D et al 2016 Appl. Phys. Lett. 109 143109
[2]Tang K et al 2016 J. Alloys Compd. 685 370
[3]Loferski J J 1956 J. Appl. Phys. 27 777
[4]Major J D 2016 Semicond. Sci. Technol. 31 093001
[5]Yang J H et al 2016 Semicond. Sci. Technol. 31 083002
[6]Pandey S et al 2005 Thin Solid Films 473 54
[7]Sathyamoorthy R et al 2003 Sol. Energy Mater. Sol. Cells 76 339
[8]Bernevig B A et al 2006 Science 314 1757
[9]Konig M et al 2007 Science 318 766
[10]Qi X L and Zhang S C 2010 Phys. Today 63 33
[11]Sporken R et al 1992 J. Vac. Sci. Technol. B 10 1405
[12]Sporken R et al 1989 Appl. Phys. Lett. 55 1879
[13]Matsumura N et al 1985 J. Cryst. Growth 71 361
[14]Zanatta J et al 1998 J. Cryst. Growth 184 1297
[15]Farrow R et al 1981 Appl. Phys. Lett. 39 954
[16]Wood S et al 1984 J. Appl. Phys. 55 4225
[17]Ballingall J et al 1985 Appl. Phys. Lett. 47 599
[18]Bicknell R et al 1984 Appl. Phys. Lett. 44 313
[19]Faurie J et al 1986 Surf. Sci. 168 473
[20]Feldman R et al 1986 Appl. Phys. Lett. 48 248
[21]Kolodziejski L et al 1986 J. Vac. Sci. Technol. A 4 2150
[22]Leopold D et al 1986 Appl. Phys. Lett. 49 1473
[23]Otsuka N et al 1985 Appl. Phys. Lett. 46 860
[24]Ponce F, Anderson G and Ballingall J 1986 Surf. Sci. 168 564
[25]Srinivasa R, Panish M and Temkin H 1987 Appl. Phys. Lett. 50 1441
[26]Cole H, Woodbury H and Schetzina J 1984 J. Appl. Phys. 55 3166
[27]Myers T, Giles T N, Yanka R, Bicknell R, Cook J J, Schetzina J, Jost S, Cole H and Woodbury H 1985 J. Vac. Sci. Technol. A 3 71
[28]Biegelsen D, Bringans R, Northrup J and Swartz L E 1990 Phys. Rev. B 41 5701
[29]Chadi D 1987 J. Vac. Sci. Technol. A 5 834
[30]Lu Z, Lagarde C, Sacher E, Currie J and Yelon A 1989 J. Vac. Sci. Technol. A 7 646
[31]Qian G X, Martin R M and Chadi D 1988 Phys. Rev. B 38 7649
[32]Vasquez R, Lewis B and Grunthaner F 1983 Appl. Phys. Lett. 42 293
[33]Cho A 1976 J. Appl. Phys. 47 2841
[34]Kou X F, Lang M R, Fan Y B, Jiang Y, Nie T X, Zhang J M, Jiang W J, Wang Y, Yao Y G, He L and Wang K L 2013 ACS Nano 7 9205
[35]He L, Kou X F and Wang K L 2013 Phys. Status Solidi-R 7 50
[36]Leo G, Longo M, Lovergine N, Mancini A, Vasanelli L, Drigo A, Romanato F, Peluso T and Tapfer L 1996 J. Vac. Sci. Technol. B 14 1739
[37]Shtrikman H, Oron M, Raizman A and Cinader G 1988 J. Electron. Mater. 17 105
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 086801
[2] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 086801
[3] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 086801
[4] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 086801
[5] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 086801
[6] Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao. Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2020, 37(11): 086801
[7] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 086801
[8] Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng, Jun-Song Liu, Ming-Chao Yang, Peng Wang, Zhi-Yuan Feng, Qi-Liang Wang, Hong-Dong Li. Wettability and Surface Energy of Hydrogen- and Oxygen-Terminated Diamond Films[J]. Chin. Phys. Lett., 2020, 37(4): 086801
[9] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 086801
[10] Yang-Yang Xu, Yu Wang, Ai-Yun Liu, Wang-Zhou Shi, Gu-Jin Hu, Shi-Min Li, Hui-Yong Deng, Ning Dai. Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films[J]. Chin. Phys. Lett., 2020, 37(2): 086801
[11] Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang, Yu-Fei Feng, Zhan-Shan Wang, Zi-Hua Xin. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors[J]. Chin. Phys. Lett., 2019, 36(12): 086801
[12] Han Xu, Zhen-Lin Luo, Chang-Gan Zeng, Chen Gao. Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer[J]. Chin. Phys. Lett., 2019, 36(7): 086801
[13] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 086801
[14] Lu Dong, Guan-Yong Wang, Zhen Zhu, Chen-Xiao Zhao, Xin-Yi Yang, Ai-Min Li, Jing-Lei Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Mao-Hai Xie, Jin-Feng Jia. Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2018, 35(6): 086801
[15] Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu, Tian-Shu Lai, Jian-Hao Zhang, Hua Zou, Zhi-Tang Song. Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application[J]. Chin. Phys. Lett., 2018, 35(5): 086801
Viewed
Full text


Abstract