Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 080301    DOI: 10.1088/0256-307X/35/8/080301
GENERAL |
Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment
Yang Yang1**, An-Min Wang2, Lian-Zhen Cao1, Jia-Qiang Zhao1, Huai-Xin Lu1
1Shandong Provincial Key Laboratory of Multi-Photon Entanglement and Manipulation, Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061
2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Yang Yang, An-Min Wang, Lian-Zhen Cao et al  2018 Chin. Phys. Lett. 35 080301
Download: PDF(555KB)   PDF(mobile)(547KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamics of coherence for a central two-qubit system coupled to an $XY$ spin chain with the Dzyaloshinsky–Moriya interaction. It is found that a sudden transition of coherence exists near the critical point in the weak-coupling case, and an oscillatory envelope appears in the strong-coupling case. In both cases the freezing phenomenon of coherence can be found.
Received: 16 April 2018      Published: 15 July 2018
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11404246, and the Shandong Provincial Natural Science Foundation under Grant No ZR2017MF040.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/080301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Yang
An-Min Wang
Lian-Zhen Cao
Jia-Qiang Zhao
Huai-Xin Lu
[1]Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[2]Natali S and Ficek Z 2007 Phys. Rev. A 75 042307
[3]Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[4]Dobrzánski R D and Maccone L 2014 Phys. Rev. Lett. 113 250801
[5]Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[6]Correa L A, Palao J P, Alonso D and Adesso G 2015 Sci. Rep. 4 3949
[7]Rónagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[8]Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[9]Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[10]Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[11]Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
[12]Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[13]Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[14]Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[15]Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[16]Du S, Bai Z and Qi X 2015 Quantum Inf. Comput. 15 1307
[17]Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[18]Chitambar E and Hsieh M H 2016 Phys. Rev. Lett. 117 020402
[19]Girolami D and Yadin B 2017 Entropy 19 124
[20]Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[21]Maziero J, Guzman H C, Ćeleri L C, Sarandy M S and Serra R 2010 Phys. Rev. A 82 012106
[22]Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[23]Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[24]Luo D W, Lin H Q, Xu J B and Yao D X 2011 Phys. Rev. A 84 062112
[25]Li Y C, Lin H Q and Xu J B 2012 Europhys. Lett. 100 20002
[26]Tian L J, Qin L G and Zhang C Y 2013 Chin. Phys. Lett. 30 050303
[27]Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[28]Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[29]Hu M L and Fan H 2016 Sci. Rep. 6 29260
[30]Wen J and Li G Q 2018 Chin. Phys. Lett. 35 060301
[31]Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
[32]Zhao M J, Ma T and Ma Y Q 2018 Sci. Chin.-Phys. Mech. Astron. 61 020311
[33]Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
[34]Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[35]Moriya T 1960 Phys. Rev. Lett. 4 228
[36]Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[37]Li Y C and Li S S 2009 Phys. Rev. A 79 032338
[38]Yang Y and Wang A M 2014 Chin. Phys. B 23 020307
[39]Qiu L and Wang A M 2011 Phys. Scr. 84 045021
[40]Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 080301
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 080301
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 080301
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 080301
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 080301
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 080301
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 080301
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 080301
[9] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 080301
[10] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 080301
[11] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 080301
[12] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 080301
[13] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 080301
[14] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 080301
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 080301
Viewed
Full text


Abstract