Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 080501    DOI: 10.1088/0256-307X/35/8/080501
GENERAL |
A Closure for Isotropic Turbulence Based on Extended Scale Similarity Theory in Physical Space
Chu-Han Wang1, Le Fang1,2**
1Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191
2Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191
Cite this article:   
Chu-Han Wang, Le Fang 2018 Chin. Phys. Lett. 35 080501
Download: PDF(500KB)   PDF(mobile)(496KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.
Received: 30 March 2018      Published: 15 July 2018
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  47.11.St (Multi-scale methods)  
  05.20.Gg (Classical ensemble theory)  
  47.27.eb (Statistical theories and models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/080501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chu-Han Wang
Le Fang
[1]Chou P Y 1945 Q. Appl. Math. 3 38
[2]Lesieur M 1997 Turbulence in Fluids (Dordrecht: Kluwer Academic)
[3]Orszag S A 1974 Lectures on the Statistical Theory of Turbulence (Massachusetts: MIT) chap IV p 109
[4]Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F and Succi S 1993 Phys. Rev. E 48 R29
[5]Benzi R, Ciliberto S, Baudet C and Chavarria G R 1995 Physica D 80 385
[6]Fang L, Zhang Y J, Fang J and Zhu Y 2016 Phys. Rev. E 94 023114
[7]Fang L and Gao F 2017 Appl. Math. Mech. Engl. Ed. 38 1627
[8]Fang L, Li B and Lu L P 2014 Acta Mech. Sin. 30 339
[9]Hill R J 2002 J. Fluid Mech. 468 317
[10]Fang L 2009 PhD Dissertation (Lyon: Ecole Centrale de Lyon)
[11]Tatarskii V I 2005 Phys. Fluids 17 035110
[12]Fang L, Bos W J T, Zhou X Z, Shao L and Bertoglio J P 2010 Acta Mech. Sin. 26 151
[13]Hill R J and Boratav O N 2001 Phys. Fluids 13 276
[14]McComb W D, Yoffe S R, Linkmann M F and Berera A 2014 Phys. Rev. E 90 053010
[15]Bos W J T and Rubinstein R 2013 J. Fluid Mech. 733 158
[16]Bos W J T, Rubinstein R and Fang L 2012 Phys. Fluids 24 075104
[17]Fang L, Zhu Y, Liu Y W and Lu L P 2015 Phys. Lett. A 379 2331
[18]She Z S and Leveque E 1994 Phys. Rev. Lett. 72 336
[19]Zhao S N, Xiong X Y, Cai X H and Hu F 2005 Europhys. Lett. 69 81
[20]Batchelor G K 1951 Proc. Cambridge Philos. Soc. 47 359
[21]Fang L and Wang L P 2015 Ninth International Symposium on Turbulence and Shear Flow Phenomena (Melbourne, Australia 30 June–3 July 2015) SESSION P-Poster P-14
Related articles from Frontiers Journals
[1] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 080501
[2] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 080501
[3] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 080501
[4] Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 080501
[5] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 080501
[6] Yan-Jin Wang, Shu-Dao Zhang. Uncertainty Quantification of Numerical Simulation of Flows around a Cylinder Using Non-intrusive Polynomial Chaos[J]. Chin. Phys. Lett., 2016, 33(09): 080501
[7] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 080501
[8] MIN Fu-Hong, SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong. Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System[J]. Chin. Phys. Lett., 2015, 32(03): 080501
[9] Rodrigo A. da Silva, Paulo C. Rech. A Parameter-Space Analysis of the Rikitake System[J]. Chin. Phys. Lett., 2013, 30(12): 080501
[10] WANG Guang-Yi, HE Jie-Ling, YUAN Fang, PENG Cun-Jian. Dynamical Behaviors of a TiO2 Memristor Oscillator[J]. Chin. Phys. Lett., 2013, 30(11): 080501
[11] MIN Fu-Hong . Function Projective Synchronization for Two Gyroscopes under Specific Constraints[J]. Chin. Phys. Lett., 2013, 30(7): 080501
[12] Amanda C. Mathias, Paulo C. Rech. Changes in the Dynamics of a Rössler Oscillator by an External Forcing[J]. Chin. Phys. Lett., 2013, 30(3): 080501
[13] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[14] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 080501
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 080501
Viewed
Full text


Abstract