CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electrical Conductivity of a Single Electro-deposited CoZn Nanowire |
Hong-Jun Wang1, Yuan-Yuan Zhu1,2**, Jing Zhou1, Yong Liu2 |
1Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021 2Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072
|
|
Cite this article: |
Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou et al 2018 Chin. Phys. Lett. 35 077304 |
|
|
Abstract CoZn nanowires are fabricated by the electrodeposition method at constant voltage mode with porous anodic aluminum oxide as templates. Scanning electron microscope and transmission electron microscope images show that the CoZn nanowires have a rather smooth surface. The nanowires have an average diameter of 50 nm, which coincides with the diameter of the used templates. The x-ray diffraction pattern reveals the polycrystalline structure of the CoZn nanowires. The electrical conductivity of a single CoZn nanowire is studied. The metallic behavior is observed at temperatures from 230 K to 30 K. Moreover, an abnormal behavior appears around 30 K. The resistance shows the slight upturn phenomenon below 30 K down to 2 K, which is due to the major conduction role of the oxidation layer on the surface of the CoZn nanowire.
|
|
Received: 26 March 2018
Published: 24 June 2018
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51571152, and the Key Research Project of Shaanxi University of Science and Technology under Grant Nos 2016GBJ-12 and 2016BJ-59. |
|
|
[1] | Nielsch K, Wehrspohn R B, Barthel J et al 2001 Appl. Phys. Lett. 79 1360 | [2] | Matsumoto F, Nishio K and Masuda H 2004 Adv. Mater. 16 2105 | [3] | Choi J, Luo Y, Wehrspohn R B et al 2003 J. Appl. Phys. 94 4757 | [4] | Morales A M and Lieber C M 1998 J. Colloid Interface Sci. 208 279 | [5] | Fan R, Wu Y Y, Li D Y et al 2003 J. Am. Chem. Soc. 125 5254 | [6] | Wang H J, Zhu Y Y and Zhou J 2018 Chin. Phys. Lett. 35 027201 | [7] | Zhu Y Y, Wang R J, Wang L et al 2014 Chin. Phys. Lett. 31 097201 | [8] | Zhang J, Hao R R, Zhong H et al 2015 Chin. Phys. Lett. 32 057601 | [9] | Li J, Papadopoulos C, Xu J M et al 1999 Appl. Phys. Lett. 75 367 | [10] | Whitney T M, Searson P C, Jiang J S et al 1993 Science 261 1316 | [11] | Masuda H and Fukuda K 1995 Science 268 1466 | [12] | Wang H J, Zou C W, Yang B et al 2009 Electrochem. Commun. 11 2019 | [13] | Riveros G, Green S, Cortes A et al 2006 Nanotechnology 17 561 | [14] | Zhang X Y, Zhang L D, Lei Y et al 2001 J. Mater. Chem. 11 1732 | [15] | Pascariu P, Tanase S I, Tanase D P et al 2012 Mater. Chem. Phys. 131 561 | [16] | Lodhi Z F, Mol J M C, Hovestad A et al 2007 Surf. Coat. Technol. 202 84 | [17] | Xu Y, Fu J L, Gao D Q et al 2010 J. Alloys Compd. 495 450 | [18] | Koohbora M, Soltaniana S, Najafia M et al 2012 Mater. Chem. Phys. 131 728 | [19] | Xie W W, Thimmaiah S, Lamsal J et al 2013 Inorg. Chem. 52 9399 | [20] | Liu L H, Gu J J, Li H T et al 2010 Chin. Phys. Lett. 27 067501 | [21] | Wang H J, Zhou J and Zhu Y Y 2018 Mater. Lett. 210 191 | [22] | Wang J, DaSilva A M, Chang C Z et al 2011 Phys. Rev. B 83 245438 | [23] | Wang Y, Xiu F X, Cheng L et al 2012 Nano Lett. 12 1170 | [24] | Analytis J G, McDonald R D, Riggs S C et al 2010 Nat. Phys. 6 960 | [25] | He H T, Wang G, Zhang T et al 2011 Phys. Rev. Lett. 106 166805 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|