Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077304    DOI: 10.1088/0256-307X/35/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electrical Conductivity of a Single Electro-deposited CoZn Nanowire
Hong-Jun Wang1, Yuan-Yuan Zhu1,2**, Jing Zhou1, Yong Liu2
1Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021
2Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072
Cite this article:   
Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou et al  2018 Chin. Phys. Lett. 35 077304
Download: PDF(1726KB)   PDF(mobile)(1715KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract CoZn nanowires are fabricated by the electrodeposition method at constant voltage mode with porous anodic aluminum oxide as templates. Scanning electron microscope and transmission electron microscope images show that the CoZn nanowires have a rather smooth surface. The nanowires have an average diameter of 50 nm, which coincides with the diameter of the used templates. The x-ray diffraction pattern reveals the polycrystalline structure of the CoZn nanowires. The electrical conductivity of a single CoZn nanowire is studied. The metallic behavior is observed at temperatures from 230 K to 30 K. Moreover, an abnormal behavior appears around 30 K. The resistance shows the slight upturn phenomenon below 30 K down to 2 K, which is due to the major conduction role of the oxidation layer on the surface of the CoZn nanowire.
Received: 26 March 2018      Published: 24 June 2018
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.15.-v (Electronic conduction in metals and alloys)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51571152, and the Key Research Project of Shaanxi University of Science and Technology under Grant Nos 2016GBJ-12 and 2016BJ-59.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077304       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Jun Wang
Yuan-Yuan Zhu
Jing Zhou
Yong Liu
[1]Nielsch K, Wehrspohn R B, Barthel J et al 2001 Appl. Phys. Lett. 79 1360
[2]Matsumoto F, Nishio K and Masuda H 2004 Adv. Mater. 16 2105
[3]Choi J, Luo Y, Wehrspohn R B et al 2003 J. Appl. Phys. 94 4757
[4]Morales A M and Lieber C M 1998 J. Colloid Interface Sci. 208 279
[5]Fan R, Wu Y Y, Li D Y et al 2003 J. Am. Chem. Soc. 125 5254
[6]Wang H J, Zhu Y Y and Zhou J 2018 Chin. Phys. Lett. 35 027201
[7]Zhu Y Y, Wang R J, Wang L et al 2014 Chin. Phys. Lett. 31 097201
[8]Zhang J, Hao R R, Zhong H et al 2015 Chin. Phys. Lett. 32 057601
[9]Li J, Papadopoulos C, Xu J M et al 1999 Appl. Phys. Lett. 75 367
[10]Whitney T M, Searson P C, Jiang J S et al 1993 Science 261 1316
[11]Masuda H and Fukuda K 1995 Science 268 1466
[12]Wang H J, Zou C W, Yang B et al 2009 Electrochem. Commun. 11 2019
[13]Riveros G, Green S, Cortes A et al 2006 Nanotechnology 17 561
[14]Zhang X Y, Zhang L D, Lei Y et al 2001 J. Mater. Chem. 11 1732
[15]Pascariu P, Tanase S I, Tanase D P et al 2012 Mater. Chem. Phys. 131 561
[16]Lodhi Z F, Mol J M C, Hovestad A et al 2007 Surf. Coat. Technol. 202 84
[17]Xu Y, Fu J L, Gao D Q et al 2010 J. Alloys Compd. 495 450
[18]Koohbora M, Soltaniana S, Najafia M et al 2012 Mater. Chem. Phys. 131 728
[19]Xie W W, Thimmaiah S, Lamsal J et al 2013 Inorg. Chem. 52 9399
[20]Liu L H, Gu J J, Li H T et al 2010 Chin. Phys. Lett. 27 067501
[21]Wang H J, Zhou J and Zhu Y Y 2018 Mater. Lett. 210 191
[22]Wang J, DaSilva A M, Chang C Z et al 2011 Phys. Rev. B 83 245438
[23]Wang Y, Xiu F X, Cheng L et al 2012 Nano Lett. 12 1170
[24]Analytis J G, McDonald R D, Riggs S C et al 2010 Nat. Phys. 6 960
[25]He H T, Wang G, Zhang T et al 2011 Phys. Rev. Lett. 106 166805
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 077304
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 077304
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 077304
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 077304
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 077304
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077304
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 077304
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 077304
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 077304
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 077304
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 077304
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 077304
[13] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 077304
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 077304
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 077304
Viewed
Full text


Abstract