Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 067403    DOI: 10.1088/0256-307X/35/6/067403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$
Cheng Hu1,2, Jian-Fa Zhao1,2, Ying Ding1,2, Jing Liu1,2, Qiang Gao1,2, Lin Zhao1, Guo-Dong Liu1, Li Yu1, Chang-Qing Jin1,2,4, Chuang-Tian Chen3, Zu-Yan Xu3, Xing-Jiang Zhou1,2,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
4Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Cheng Hu, Jian-Fa Zhao, Ying Ding et al  2018 Chin. Phys. Lett. 35 067403
Download: PDF(5287KB)   PDF(mobile)(5285KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The parent compounds of the high-temperature cuprate superconductors are Mott insulators. It has been generally agreed that understanding the physics of the doped Mott insulators is essential to understanding the mechanism of high temperature superconductivity. A natural starting point is to elucidate the basic electronic structure of the parent compound. Here we report comprehensive high resolution angle-resolved photoemission measurements on Ca$_2$CuO$_2$Cl$_2$, a Mott insulator and a prototypical parent compound of the cuprates. Multiple underlying Fermi surface sheets are revealed for the first time. The high energy waterfall-like band dispersions exhibit different behaviors near the nodal and antinodal regions. Two distinct energy scales are identified: a d-wave-like low energy peak dispersion and a nearly isotropic lower Hubbard band gap. These observations provide new information of the electronic structure of the cuprate parent compound, which is important for understanding the anomalous physical properties and superconductivity mechanism of the high temperature cuprate superconductors.
Received: 20 May 2018      Published: 23 May 2018
PACS:  74.72.Cj (Insulating parent compounds)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Key Research and Development Program of China (2016YFA0300300), the National Natural Science Foundation of China (11334010 and 11534007), the National Basic Research Program of China (2015CB921000), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB07020300).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/067403       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/067403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Hu
Jian-Fa Zhao
Ying Ding
Jing Liu
Qiang Gao
Lin Zhao
Guo-Dong Liu
Li Yu
Chang-Qing Jin
Chuang-Tian Chen
Zu-Yan Xu
Xing-Jiang Zhou
[1]Anderson P W and Schrieffer R 1991 Phys. Today 44 54
[2]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[3]Miller L L et al 1990 Phys. Rev. B 41 1921
[4]Hirio Z et al 1995 Physica C 255 61
[5]Waku K et al 2004 Phys. Rev. B 70 134501
[6]Ye C et al 2013 Nat. Commun. 4 1365
[7]Wells B O et al 1995 Phys. Rev. Lett. 74 964
[8]Kim C et al 1998 Phys. Rev. Lett. 80 4245
[9]Ronning F et al 1998 Science 282 2067
[10]Ronning F et al 2005 Phys. Rev. B 71 094518
[11]Graf J et al 2007 Rev. Lett. 98 067004
[12]Xie B P et al 2007 Phys. Rev. Lett. 98 147001
[13]Valla T et al 2007 Phys. Rev. Lett. 98 167003
[14]Meevasana W et al 2007 Phys. Rev. B 75 174506
[15]Chang J et al 2007 Phys. Rev. B 75 224508
[16]Inosov D S et al 2007 Phys. Rev. Lett. 99 237002
[17]Rienks E D et al 2014 Phys. Rev. Lett. 113 137001
[18]Byczuk K et al 2007 Nat. Phys. 3 168
[19]Tan F et al 2007 Phys. Rev. B 76 054505
[20]Zhou T, Wang Z D 2007 Phys. Rev. B 75 184506
[21]Macridin A et al 2007 Phys. Rev. Lett. 99 237001
[22]Markiewicz R S et al 2007 Phys. Rev. B 75 020508(R)
[23]Manousakis E et al 2007 Phys. Rev. B 75 035106
[24]Alexandrov A S et al 2007 Phys. Rev. B 76 132506
[25]Leigh R G et al 2007 Phys. Rev. Lett. 99 046404
[26]Zhu L et al 2008 Phys. Rev. Lett. 100 057001
[27]Srivastava P et al 2007 Phys. Rev. B 76 184435
[28]Zemljic M M et al 2008 Phys. Rev. Lett. 100 036402
[29]Tan F et al 2008 Phys. Rev. Lett. 100 117004
[30]Zhang W T et al 2008 Phys. Rev. Lett. 101 017002
[31]Moritz B et al 2009 New J. Phys. 11 093020
[32]Hiroi Z et al 1994 Nature 371 139
[33]Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[34]Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[35]Peng Y Y et al 2013 Nat. Commun. 4 2459
Related articles from Frontiers Journals
[1] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 067403
[2] Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan, Yi-Yan Wang, Jian-Hong Dai, Rajesh Jana, Ke-Yu Chen, Jian-Ping Sun, Bo-Sen Wang, Xiao-Hui Yu, Guang-Tong Liu, Yoshiya Uwatoko, Yu Sui, Huai-Xin Yang, Gen-Fu Chen, Jin-Guang Cheng. Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(4): 067403
Viewed
Full text


Abstract