Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 067402    DOI: 10.1088/0256-307X/35/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Analysis of the Self-Protection Characteristics of a 1.5T Bitter-Like HTS Magnet Operated at 65K
Yan-Bing Hou, Yin-Shun Wang**, Chang-Tao Kan, Xi Yuan, Wei Pi
State Key Laboratory of New Energy Power System, North China Electric Power University, Beijing 102206
Cite this article:   
Yan-Bing Hou, Yin-Shun Wang, Chang-Tao Kan et al  2018 Chin. Phys. Lett. 35 067402
Download: PDF(952KB)   PDF(mobile)(953KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a conceptual configuration of a high-temperature superconducting (HTS) magnet made from REBCO (Re=Rare Earth, B=Barium, C=Copper, O=Oxide) annular plates, called a Bitter-like HTS magnet, which can operate in persistent current mode without joint resistance and can be excited by a flux pump and without current leads and a persistent power supply. An REBCO annular magnet which can generate 1.5 T corresponding to the operating current density 80% of critical current density of the magnet at an operating temperature of 65 K is conceptually designed. Then the thermal stability of the magnet is numerically simulated by Comsol software. When a piece of REBCO annular plate quenches, the maximum released energy is its stored energy because each REBCO annular plate in the Bitter-like magnet is in parallel. To calculate the stored energy in the REBCO annular plate, the inductance of every annular plate, including self-inductance and mutual inductance, is calculated. Compared with the minimum quench energy (MQE) and stored energy in one REBCO annular plate, the stored energy in one REBCO annular plate is always smaller than the MQE, and the REBCO annular plate will not be damaged even though the stored energy in the REBCO annular plate is fully released, which indicates that this 1.5 T Bitter-like magnet has the property of self-protection.
Received: 03 January 2018      Published: 19 May 2018
PACS:  74.25.Fy  
  74.72.Bk  
  74.78.Bz  
  74.81.Bd (Granular, melt-textured, amorphous, and composite superconductors)  
Fund: Supported by the Fundamental Research Funds for the Central Universities under Grant No 2018MS004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/067402       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Bing Hou
Yin-Shun Wang
Chang-Tao Kan
Xi Yuan
Wei Pi
[1]Obradors X and Puig T 2014 Supercond. Sci. Technol. 27 044003
[2]Ding F Z, Zhang J Y, Tan Y F, Chen Z Y, Dong Z W, Zhang H L, Shang H J, Xu W J, Zhang H, Qu F, Gao Z S, Zhou W W and Gu H W 2018 Acta Phys. Sin. 67 068401 (in Chinese)
[3]Nam S, Lee W S, Lee J, Jeon H, HanS, Choi Y, Lee J and Koe T K 2017 IEEE Trans. Appl. Supercond. 27 4803105
[4]Miyazaki H, Iwai S, Tosaka T, Tasaki K, Hanai S, Urata M, Iokaet S and Ishiial Y 2011 IEEE Trans. Appl. Supercond. 21 2453
[5]Celentano G, Messina G, Angrisani A A, Augieri A, Fabbri F, Galluzzi V, Mancini A, Rizzo F, Rufoloni A, Vannozzi A, Gambardella U, Saggese A and SabatinoP G 2013 IEEE Trans. Appl. Supercond. 23 4600704
[6]Breschi M, Cavallucci L and Ribani P L 2016 Supercond. Sci. Technol. 29 055002
[7]Wakuda T, Ichiki Y and Park M 2012 IEEE Trans. Appl. Supercond. 22 4703404
[8]Fazilleau P, Borgnolutti F and Lécrevisse T 2016 IEEE Trans. Appl. Supercond. 26 4700705
[9]Weijers H W, Markiewicz W D, Voran A J, Gundlach S R, Sheppard W R, Jarvis B and Johnson Z L 2014 IEEE Trans. Appl. Supercond. 24 4301805
[10]Yuan X, Wang Y S, Hou Y B, Kan C T, Cai C B and Sun M J 2018 IEEE Trans. Appl. Supercond. 28 4603005
[11]Berger K, Leveque J, Netter D, Douine B and Rezzoug A 2007 IEEE Trans. Appl. Supercond. 17 3028
[12]Masson P J, Rouault V R, Hoffmann G and Luongo C A 2008 IEEE Trans. Appl. Supercond. 18 1321
[13]Cavaliere V, Masullo G and Formisano A 2009 IEEE Trans. Appl. Supercond. 45 1190
[14]Härö E, Stenvall A, Nugteren J and Kirby G 2015 IEEE Trans. Appl. Supercond. 25 4701505
[15]Roy F, Dutoit B, Grilli F and Sirois F 2008 IEEE Trans. Appl. Supercond. 18 29
[16]Breschi M, Casali M, Cavallucci L, Marzi G D and Tomassetti G 2015 IEEE Trans. Appl. Supercond. 25 4800505
Related articles from Frontiers Journals
[1] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 067402
[2] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 067402
[3] Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu, Jian-Fa Zhao, Cheng Dong, Guang-Yang Dai, Xiao-Dong Li, He-Chang Lei, Run-Ze Yu, Guang-Ming Zhang, and Chang-Qing Jin. Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 067402
[4] TAHER Ghrib, AMAL Lafy Al-Otaibi, MUNIRAH Abdullah Almessiere, IBTISSEM Ben Assaker, RADHOUANE Chtourou. High Thermoelectric Figure of Merit of Ag8SnS6 Component Prepared by Electrodeposition Technique[J]. Chin. Phys. Lett., 2015, 32(12): 067402
[5] SONG Xiao-Hui, JIN Yi-Rong, FAN Zhen-Jun, MI Zhen-Yu, ZHANG Dian-Lin. Degradation Mechanism of the Superconducting Transition Temperature in Nb Thin Films[J]. Chin. Phys. Lett., 2015, 32(4): 067402
[6] PI Wei, WANG Yin-Shun, DONG Jin, CHEN Lei. AC Alternating-Current Loss Analyses of a Thin High-Temperature Superconducting Tube Carrying AC Transport Current in AC External Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(3): 067402
[7] HE Li, HU Xiang, YIN Lan, XU Xiao-Lin, GUO Jian-Dong, LI Chuan-Yi, YIN Dao-Le. Extended Power Law and Hall Anomaly of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2009, 26(3): 067402
[8] ZHANG Wei, SUN Li-Zhen, LUO Meng-Bo. Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media[J]. Chin. Phys. Lett., 2009, 26(2): 067402
[9] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 067402
[10] CHEN Xue-Ou, DONG Bing, LEI Xiao-Lin. Thermal Rectification Effect of an Interacting Quantum Dot[J]. Chin. Phys. Lett., 2008, 25(8): 067402
[11] WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements[J]. Chin. Phys. Lett., 2008, 25(5): 067402
[12] YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition[J]. Chin. Phys. Lett., 2007, 24(7): 067402
[13] HE Chun-Yuan, GAO Chun-Xiao, LI Ming, HAO Ai-Min, HUANG Xiao-Wei, ZHANG Dong-Mei, YU Cui-Ling, WANG Yue. Electron Transport Property of CdTe under High Pressure and Moderate Temperature by In-Situ Resistivity Measurement in Diamond Anvil Cell[J]. Chin. Phys. Lett., 2007, 24(4): 067402
[14] HU Xiang, HE Li, NING Zhen-Hua, CHEN Kai-Xuan, YIN Lan, LU Guo, XU Xiao-Lin, GUO Jian-Dong, WANG Fu-Ren, LI Chuan-Yi, YIN Dao-Le. Critical Scaling of Extended Power Law I - V Isotherms near Vortex Glass Transition[J]. Chin. Phys. Lett., 2006, 23(12): 067402
[15] HUANG Sheng-Li, RUAN Ke-Qing, TANG Yu, CAO Lie-Zhao, LI Xiao-Guang. Electrical Properties and Raman Spectra of BaBi1-xPbxO3[J]. Chin. Phys. Lett., 2006, 23(5): 067402
Viewed
Full text


Abstract