Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 066101    DOI: 10.1088/0256-307X/35/6/066101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling
Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu**
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640
Cite this article:   
Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu 2018 Chin. Phys. Lett. 35 066101
Download: PDF(511KB)   PDF(mobile)(508KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the matching rules for squares and rhombuses, we study the self-similar transformation and the vertex configurations of the Ammann–Beenker tiling. The structural properties of the configurations and their relations during the self-similar transformation are obtained. Our results reveal the distribution correlations of the configurations, which provide an intuitive understanding of the octagonal quasi-periodic structure and also give implications for growing perfect quasi-periodic tiling according to the local rules.
Received: 27 December 2017      Published: 19 May 2018
PACS:  61.44.Br (Quasicrystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11674102.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/066101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/066101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Mei Zhang
Cheng Cai
Xiu-Jun Fu
[1]Shechtman D, Blech I, Gratias D et al 1984 Phys. Rev. Lett. 53 1951
[2]Levine D and Steinhardt P J 1984 Phys. Rev. Lett. 53 2477
[3]Liu Y Y and Fu X J 1999 Quasicrystals (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese)
[4]Ammann R, Grünbaum B and Shephard G C 1992 Discrete Comput. Geom. 8 1
[5]Beenker F P M 1982 Algebraic Theory Non-periodic Tilings By Two Simple Building Blocks: A Square A Rhombus (Eindhoven Tech. University: TH-Report 82-WSK-04)
[6]Socolar J E S 1989 Phys. Rev. B 39 10519
[7]Macé N, Jagannathan A, Kalugin P et al 2017 Phys. Rev. B 96 045138
[8]Ricciardi A, Pisco M, Cutolo A et al 2011 Phys. Rev. B 84 085135
[9]Repetowicz P, Grimm U and Schreiber M 1999 J. Phys. A 32 4397
[10]Simon H and Baake M 1997 J. Phys. A 30 5319
[11]Jaric M V 1989 Introduction to the Mathematics of Quasicrystals, Aperiodicity and Order (San Diego: Academic Press)
[12]Goodman-Strauss C 1998 Ann. Math. 147 181
[13]Wang N, Chen H and Kuo K H 1987 Phys. Rev. Lett. 59 1010
[14]Onoda G Y, Steinhardt P J, Divincenzo D P et al 1988 Phys. Rev. Lett. 60 2653
[15]Gumbs G and Ali M K 1988 Phys. Rev. Lett. 60 1081
[16]Jeong C H 2007 Phys. Rev. Lett. 98 135501
[17]Peng B Y and Fu X J 2015 Chin. Phys. Lett. 32 056101
[18]de Bruijn N G 1981 Ned. Akad. Wetensch. Prosc. Ser. A 43 39
Related articles from Frontiers Journals
[1] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 066101
[2] Zi-Jing Li, Lin-Ran Zhao, Yu-Ting Wang, Ze-Ming Chen, Wen-Kang Tu, Ya-Qi Zhang, Hong Bo, Ying-Dan Liu, Li-Min Wang. An Attempt to Prepare Metallic Glasses from Quasicrystals[J]. Chin. Phys. Lett., 2016, 33(04): 066101
[3] PENG Ben-Yi, FU Xiu-Jun. Configurations of the Penrose Tiling beyond Nearest Neighbors[J]. Chin. Phys. Lett., 2015, 32(5): 066101
[4] LI Xiao-Tian, YANG Xiao-Bao, ZHAO Yu-Jun. Quasilattice-Conserved Optimization of the Atomic Structure of Decagonal Al-Co-Ni Quasicrystals[J]. Chin. Phys. Lett., 2015, 32(03): 066101
[5] LIAO Long-Guang, ZHANG Wen-Bin, YU Tong-Xu, CAO Ze-Xian. A Single Cluster Covering for Dodecagonal Quasiperiodic Ship Tiling[J]. Chin. Phys. Lett., 2013, 30(2): 066101
[6] CHEN Zhi-Wei,FU Xiu-Jun**. Quasicrystalline Phase with Eighteen-Fold Diffraction Symmetry in Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2012, 29(5): 066101
[7] WEN Zhang-Bin, HOU Zhi-Lin, FU Xiu-Jun** . Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure[J]. Chin. Phys. Lett., 2011, 28(4): 066101
[8] FU Hong, LIAO Long-Guang, FU Xiu-Jun. Covering Rules and Nearest Neighbour Configurations of the Dodecagonal Quasiperiodic Structure[J]. Chin. Phys. Lett., 2009, 26(5): 066101
[9] LIAO Long-Guang, FU Xiu-Jun, HOU Zhi-Lin. Configurations and Self-similar Transformation of Octagonal Quasilattice[J]. Chin. Phys. Lett., 2008, 25(12): 066101
[10] WANG Jian-Bo, MA Jia-Yan, LU Lu, XIONG Dong-Xia, ZHAO Dong-Shan, WANG Ren-Hui. Plastic Deformation of Fine-Grained Al--Cu--Fe--(B) Icosahedral Poly-Quasicrystals at Elevated Temperature[J]. Chin. Phys. Lett., 2007, 24(8): 066101
[11] LI Lian-He, FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function[J]. Chin. Phys. Lett., 2006, 23(9): 066101
[12] ZHANG Yong-Gang, JIANG Xun-Ya, ZHU Cheng, GU Yi, LI Ai-Zhen, QI Ming, FENG Song-Lin. Growth and Characterization of GaAs/AlGaAs Thue--Morse Quasicrystal Photonic Bandgap Structures[J]. Chin. Phys. Lett., 2005, 22(5): 066101
[13] ZHOU Xiang, HU Cheng-Zheng, GONG Ping, ZHU Jia-Kun. Linear and Nonlinear Optical Properties of Quasicrystals[J]. Chin. Phys. Lett., 2004, 21(1): 066101
[14] WANG Xiao-Dong, QI Min, DONG Chuang,. Bergman Clusters Related to Bulk Amorphous Alloys and Quasi-crystals[J]. Chin. Phys. Lett., 2003, 20(6): 066101
[15] HOU Zhi-Lin, FU Xiu-Jun, LIU You-Yan. Electronic Transmission Properties of Two-Dimensional Quasi-lattice[J]. Chin. Phys. Lett., 2002, 19(2): 066101
Viewed
Full text


Abstract