CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$ |
Shun-yu Zhou1,2, Yan-xia Ye3, Kun Ding1, De-sheng Jiang1, Xiu-ming Dou1,2**, Bao-quan Sun1,2** |
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 3MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
Shun-yu Zhou, Yan-xia Ye, Kun Ding et al 2018 Chin. Phys. Lett. 35 066201 |
|
|
Abstract The influence of the pressure transmission medium (PTM) on the excitonic interband transitions in monolayer tungsten diselenide (WSe$_{2}$) is investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5 GPa. Three kinds of PTMs, condensed argon (Ar), 1:1 n-pentane and isopentane mixture (PM), and 4:1 methanol and ethanol mixture (MEM, a PTM with polarity), are used. It is found that when either Ar or PM is used as the PTM, the PL peak of exciton related to the direct $K$–$K$ interband transition shows a pressure-induced blue-shift at a rate of 32$\pm$4 or 32$\pm$1 meV/GPa, while it turns to be 50$\pm$9 meV/GPa when MEM is used as the PTM. The indirect ${\it \Lambda}$–$K$ interband transition presents almost no shift with increasing pressure up to approximately 5 GPa when Ar and PM are used as the PTM, while it shows a red-shift at the rate of $-$17$\pm$7 meV/GPa by using MEM as the PTM. These results reveal that the optical interband transitions of monolayer WSe$_{2}$ are very sensitive to the polarity of the PTM. The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.
|
|
Received: 26 March 2018
Published: 19 May 2018
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
68.08.-p
|
(Liquid-solid interfaces)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301202, the National Natural Science Foundation of China under Grant Nos 11474275, 61674135 and 91536101, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDPB0603, and the China Postdoctoral Science Foundation under Grant No 2017M622400. |
|
|
[1] | Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 | [2] | Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 | [3] | Sun Z and Chang H 2014 ACS Nano 8 4133 | [4] | Moody G, Dass C K, Hao K, Chen C H, Li L J, Singh A, Tran K, Clark G, Xu X and Berghäuser G 2015 Nat. Commun. 6 8315 | [5] | Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801 | [6] | Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D and Yao W 2013 Nat. Commun. 4 1474 | [7] | Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G and Xiao D 2013 Nat. Nanotechnol. 8 634 | [8] | Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotechnol. 9 268 | [9] | Wei X, Yan F G, Shen C, Lv Q S and Wang K Y 2017 Chin. Phys. B 26 038504 | [10] | Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 | [11] | Qiu D Y, Felipe H and Louie S G 2013 Phys. Rev. Lett. 111 216805 | [12] | Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214 | [13] | He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803 | [14] | Pöllmann C, Steinleitner P, Leierseder U, Nagler P, Plechinger G, Porer M, Bratschitsch R, Schüller C, Korn T and Huber R 2015 Nat. Mater. 14 889 | [15] | Steinleitner P, Merkl P, Nagler P, Mornhinweg J, Schüller C, Korn T, Chernikov A and Huber R 2017 Nano Lett. 17 1455 | [16] | Chang C H, Fan X, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420 | [17] | Fan X, Chang C H, Zheng W, Kuo J L and Singh D J 2015 J. Phys. Chem. C 119 10189 | [18] | Ye Y, Dou X, Ding K, Jiang D, Yang F and Sun B 2016 Nanoscale 8 10843 | [19] | Dou X, Ding K, Jiang D and Sun B 2014 ACS Nano 8 7458 | [20] | Dou X, Ding K, Jiang D, Fan X and Sun B 2016 ACS Nano 10 1619 | [21] | Mao N, Chen Y, Liu D, Zhang J and Xie L 2013 Small 9 1312 | [22] | Cai Y, Zhang G and Zhang Y W 2017 J. Phys. Chem. C 121 10182 | [23] | Mitioglu A, Plochocka P, Granados del Aguila Á Christianen P, Deligeorgis G, Anghel S, Kulyuk L and Maude D 2015 Nano Lett. 15 4387 | [24] | Fu L, Wan Y, Tang N, Ding Y m, Gao J, Yu J, Guan H, Zhang K, Wang W and Zhang C 2017 Sci. Adv. 3 e1700162 | [25] | Fu X, Li F, Lin J F, Gong Y, Huang X, Huang Y, Han B, Zhou Q and Cui T 2017 J. Phys. Chem. Lett. 8 3556 | [26] | Mao H, Xu J A and Bell P 1986 J. Geophys. Res. 91 4673 | [27] | Tateiwa N and Haga Y 2009 Rev. Sci. Instrum. 80 123901 | [28] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|