Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 050201    DOI: 10.1088/0256-307X/35/5/050201
GENERAL |
Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model
Zhao-Wen Yan1, Mei-Na Zhang1 Ji-Feng Cui2**
1School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021
2College of Science, Inner Mongolia University of Technology, Hohhot 010021
Cite this article:   
Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui 2018 Chin. Phys. Lett. 35 050201
Download: PDF(396KB)   PDF(mobile)(396KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct the fourth-order inhomogeneous generalized HS model and investigate the integrability property of the supersymmetric integrable system. Moreover, in terms of the gauge transformation, we investigate the corresponding gauge equivalent counterparts under two constraints, i.e., the super inhomogeneous generalized nonlinear Schrödinger equation and the fermionic inhomogeneous generalized nonlinear Schrödinger equation.
Received: 08 January 2018      Published: 30 April 2018
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  02.30.Rz (Integral equations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11605096 and 11601247, the Science Research Project of Inner Mongolia University of Technology under Grant No ZD201613, and the Innovation Foundation of Inner Mongolia University for the College Students under Grant No 201711208.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/050201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao-Wen Yan
Mei-Na Zhang Ji-Feng Cui
[1]Zakharov V E and Takhtajan L A 1979 Theor. Math. Phys. 38 17
[2]Lakshmanan M 1977 Phys. Lett. A 61 53
[3]Abdulleav F 1994 Theory of Solitons in Inhomogeneous Media (New York: Wiley)
[4]Chen H H and Liu C S 1978 Phys. Fluids 21 377
[5]Lakshmanan M and Ganesan S 1983 J. Phys. Soc. Jpn. 52 4031
[6]Mikhailov A V and Shabat A B 1986 Phys. Lett. A 116 191
[7]Lakshmanan M et al 1988 Phys. Lett. A 133 483
[8]Porsezian K 1998 Chaos Solitons Fractals 9 1709
[9]Zhao W Z et al 2006 Phys. Lett. A 352 64
[10]Levin A et al 2014 Nucl. Phys. B 887 400
[11]Mathieu P 1988 J. Math. Phys. 29 2499
[12]Sarma D 2004 Nucl. Phys. B 681 351
[13]Manin Yu I and Radul A O 1985 Commun. Math. Phys. 98 65
[14]Makhankov V G and Pashaev O K 1992 J. Math. Phys. 33 2923
[15]Guo J F et al 2009 J. Math. Phys. 50 113502
[16]Yan Z W et al 2016 Mod. Phys. Lett. B 30 1650251
[17]Choudhury A G and Chowdhury A R 1994 Int. J. Theor. Phys. 33 2031
[18]Yan Z W et al 2012 J. Phys. Soc. Jpn. 81 094006
[19]Yan Z W et al 2013 J. Math. Phys. 54 033506
[20]Yan Z W 2017 Z. Naturforsch. A 72 331
[21]Yan Z W et al 2017 Z. Naturforsch. A 72 811
[22]Kavitha L and Daniel M 2003 J. Phys. A 36 10471
[23]Agrawal G P 2007 Nonlinear Fiber Optics (New York: Academic Press)
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 050201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 050201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 050201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 050201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 050201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 050201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 050201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 050201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 050201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 050201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 050201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 050201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 050201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 050201
Viewed
Full text


Abstract