Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 050202    DOI: 10.1088/0256-307X/35/5/050202
GENERAL |
Rogue Waves in Nonintegrable KdV-Type Systems
Senyue Lou1,2,3**, Ji Lin3
1Physics Department and Ningbo Collaborative Innovation Center of Nonlinear Hazard System of Ocean and Atmosphere, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
3Department of Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
Senyue Lou, Ji Lin 2018 Chin. Phys. Lett. 35 050202
Download: PDF(530KB)   PDF(mobile)(529KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is proved that rogue waves can be found in Korteweg de-Vries (KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without modulation instability which is considered as the main formation mechanism of the rogue waves.
Received: 06 December 2017      Published: 30 April 2018
PACS:  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11675084 and 11435005, and the K. C. Wong Magna Fund in Ningbo University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/050202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/050202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Senyue Lou
Ji Lin
[1]Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V and Tarakanov V P 2017 Phys. Rev. Lett. 119 034801
[2]Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[3]Hohmann R, Kuhl U, Stockmann H J, Kaplan L and Heller E J 2010 Phys. Rev. Lett. 104 093901
[4]Panwar A, Rizvi H and Ryu C M 2013 Phys. Plasmas 20 082101
[5]Moslem W M, Shukla P K and Eliasson B 2011 Europhys. Lett. 96 25002
[6]Onorato M, Residori S, Bortolozzo U, Montinad A and Arecchi F T 2013 Phys. Rep. 528 47
[7]Kharif C and Pelinovsky E 2003 Europhys. J. Mech. B 22 603
[8]Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[9]Yan Z Y, Konotop V V and Akhmediev N 2010 Phys. Rev. E 82 036610
[10]Yan Z Y 2011 Phys. Lett. A 375 4274
[11]Yan Z Y 2010 Commun. Theor. Phys. 54 947
[12]Pedlosky J 1979 Geophysical Fluid Dynamics (New York: Springer-Verlag) p 624
[13]Huang F, Tang X Y, Lou S Y and Lu C H 2007 J. Atmos. Sci. 64 52
[14]Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[15]Manakov S V, Zakharov V E, Bordag L A and Matveev V B 1977 Phys. Lett. A 63 205
[16]Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[17]Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[18]Lou S Y 2000 Phys. Lett. A 277 94
[19]Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[20]Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 050202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 050202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 050202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 050202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 050202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 050202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 050202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 050202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 050202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 050202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 050202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 050202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 050202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 050202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 050202
Viewed
Full text


Abstract