Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 038103    DOI: 10.1088/0256-307X/35/3/038103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel
De-Sheng Zhao1,2**, Ran Liu1**, Kai Fu2, Guo-Hao Yu2, Yong Cai2, Hong-Juan Huang2, Yi-Qun Wang2, Run-Guang Sun1, Bao-Shun Zhang2**
1The State Key Laboratory of ASIC and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433
2Nano Fabrication Facility, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
Cite this article:   
De-Sheng Zhao, Ran Liu, Kai Fu et al  2018 Chin. Phys. Lett. 35 038103
Download: PDF(554KB)   PDF(mobile)(552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an Al$_{0.25}$Ga$_{0.75}$N/GaN based lateral field emission device with a nanometer scale void channel. A $\sim$45 nm void channel is obtained by etching out the SiO$_{2}$ sacrificial dielectric layer between the semiconductor emitter and the metal collector. Under an atmospheric environment instead of vacuum conditions, the GaN-based field emission device shows a low turn-on voltage of 2.3 V, a high emission current of $\sim$40 $\mu$A (line current density 2.3 mA/cm) at a collector bias $V_{\rm C}=3$ V, and a low reverse leakage of 3 nA at $V_{\rm C}=-3$ V. These characteristics are attributed to the nanometer scale void channel as well as the high density of two-dimensional electron gas in the AlGaN/GaN heterojunction. This type of device may have potential applications in high frequency microelectronics or nanoelectronics.
Received: 23 October 2017      Published: 25 February 2018
PACS:  81.05.Ea (III-V semiconductors)  
  85.45.Db (Field emitters and arrays, cold electron emitters)  
  85.45.Bz (Vacuum microelectronic device characterization, design, and modeling)  
Fund: Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20160400, and the Science and Technology Project of Suzhou under Grant No SZS201508.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/038103       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/038103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
De-Sheng Zhao
Ran Liu
Kai Fu
Guo-Hao Yu
Yong Cai
Hong-Juan Huang
Yi-Qun Wang
Run-Guang Sun
Bao-Shun Zhang
[1]Koomey J, Berard S, Sanchez M and Wong H 2011 IEEE Ann. Hist. Comput. 33 46
[2]Xu N S and Huq S E 2005 Mater. Sci. Eng. R 48 47
[3]Tsai T Y, Chang S J, Weng W Y, Li S G, Liu S, Hsu C L, Hsueh H T and Hsueh T J 2013 IEEE Electron Device Lett. 34 553
[4]Li G W, Song B, Ganguly S, Zhu M D, Wang R H, Yan X D, Verma J, Protasenko V, Xing H G and Jena D 2014 Appl. Phys. Lett. 104 193506
[5]Zhao W, Wang R Z, Song X M, Wang H, Wang B, Yan H and Chu P K 2011 Appl. Phys. Lett. 98 152110
[6]Dinh D V, Kang S M, Yang J H, Kim S W and Yoon D H 2009 J. Cryst. Growth 311 495
[7]Choi Y, Michan M, Johnson J L, Naieni A K, Ural A and Nojeh A 2012 J. Appl. Phys. 111 044308
[8]Park J H, Lee H I, Tae H S, Huh J S and Lee J H 1997 IEEE Trans. Electron Devices 44 1018
[9]Subramanian K, Kang W P and Davidson J L 2008 IEEE Electron Device Lett. 29 1259
[10]Srisonphan S, Jung Y S and Kim H K 2012 Nat. Nanotechnol. 7 504
[11]Gaska R, Shur M S, Bykhovski A D, Orlov A O and Snider G L 1999 Appl. Phys. Lett. 74 287
[12]Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q and Wang Z G 2015 Chin. Phys. Lett. 32 058501
[13]Wang H, Wang N, Jiang L L, Lin X P, Zhao H Y and Yu H Y 2017 Chin. Phys. B 26 047305
[14]Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173
[15]Han J W, Oh J S and Meyyappan M 2012 Appl. Phys. Lett. 100 213505
[16]Stoner B R and Glass J T 2012 Nat. Nanotechnol. 7 485
[17]Higashiwaki M, Chowdhury S, Miao M S, Swenson B L, van de Walle C G and Mishra U K 2010 J. Appl. Phys. 108 063719
[18]Higashiwaki M, Chowdhury S, Swenson B L and Mishra U K 2010 Appl. Phys. Lett. 97 222104
[19]Goyal N, Iniguez B and Fjeldly T A 2012 Appl. Phys. Lett. 101 103505
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 038103
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 038103
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 038103
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 038103
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 038103
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 038103
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 038103
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 038103
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 038103
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 038103
[11] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 038103
[12] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 038103
[13] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 038103
[14] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 038103
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 038103
Viewed
Full text


Abstract