CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel |
De-Sheng Zhao1,2**, Ran Liu1**, Kai Fu2, Guo-Hao Yu2, Yong Cai2, Hong-Juan Huang2, Yi-Qun Wang2, Run-Guang Sun1, Bao-Shun Zhang2** |
1The State Key Laboratory of ASIC and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433 2Nano Fabrication Facility, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
|
|
Cite this article: |
De-Sheng Zhao, Ran Liu, Kai Fu et al 2018 Chin. Phys. Lett. 35 038103 |
|
|
Abstract We report an Al$_{0.25}$Ga$_{0.75}$N/GaN based lateral field emission device with a nanometer scale void channel. A $\sim$45 nm void channel is obtained by etching out the SiO$_{2}$ sacrificial dielectric layer between the semiconductor emitter and the metal collector. Under an atmospheric environment instead of vacuum conditions, the GaN-based field emission device shows a low turn-on voltage of 2.3 V, a high emission current of $\sim$40 $\mu$A (line current density 2.3 mA/cm) at a collector bias $V_{\rm C}=3$ V, and a low reverse leakage of 3 nA at $V_{\rm C}=-3$ V. These characteristics are attributed to the nanometer scale void channel as well as the high density of two-dimensional electron gas in the AlGaN/GaN heterojunction. This type of device may have potential applications in high frequency microelectronics or nanoelectronics.
|
|
Received: 23 October 2017
Published: 25 February 2018
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
85.45.Db
|
(Field emitters and arrays, cold electron emitters)
|
|
85.45.Bz
|
(Vacuum microelectronic device characterization, design, and modeling)
|
|
|
Fund: Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20160400, and the Science and Technology Project of Suzhou under Grant No SZS201508. |
|
|
[1] | Koomey J, Berard S, Sanchez M and Wong H 2011 IEEE Ann. Hist. Comput. 33 46 | [2] | Xu N S and Huq S E 2005 Mater. Sci. Eng. R 48 47 | [3] | Tsai T Y, Chang S J, Weng W Y, Li S G, Liu S, Hsu C L, Hsueh H T and Hsueh T J 2013 IEEE Electron Device Lett. 34 553 | [4] | Li G W, Song B, Ganguly S, Zhu M D, Wang R H, Yan X D, Verma J, Protasenko V, Xing H G and Jena D 2014 Appl. Phys. Lett. 104 193506 | [5] | Zhao W, Wang R Z, Song X M, Wang H, Wang B, Yan H and Chu P K 2011 Appl. Phys. Lett. 98 152110 | [6] | Dinh D V, Kang S M, Yang J H, Kim S W and Yoon D H 2009 J. Cryst. Growth 311 495 | [7] | Choi Y, Michan M, Johnson J L, Naieni A K, Ural A and Nojeh A 2012 J. Appl. Phys. 111 044308 | [8] | Park J H, Lee H I, Tae H S, Huh J S and Lee J H 1997 IEEE Trans. Electron Devices 44 1018 | [9] | Subramanian K, Kang W P and Davidson J L 2008 IEEE Electron Device Lett. 29 1259 | [10] | Srisonphan S, Jung Y S and Kim H K 2012 Nat. Nanotechnol. 7 504 | [11] | Gaska R, Shur M S, Bykhovski A D, Orlov A O and Snider G L 1999 Appl. Phys. Lett. 74 287 | [12] | Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q and Wang Z G 2015 Chin. Phys. Lett. 32 058501 | [13] | Wang H, Wang N, Jiang L L, Lin X P, Zhao H Y and Yu H Y 2017 Chin. Phys. B 26 047305 | [14] | Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173 | [15] | Han J W, Oh J S and Meyyappan M 2012 Appl. Phys. Lett. 100 213505 | [16] | Stoner B R and Glass J T 2012 Nat. Nanotechnol. 7 485 | [17] | Higashiwaki M, Chowdhury S, Miao M S, Swenson B L, van de Walle C G and Mishra U K 2010 J. Appl. Phys. 108 063719 | [18] | Higashiwaki M, Chowdhury S, Swenson B L and Mishra U K 2010 Appl. Phys. Lett. 97 222104 | [19] | Goyal N, Iniguez B and Fjeldly T A 2012 Appl. Phys. Lett. 101 103505 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|