Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 037402    DOI: 10.1088/0256-307X/35/3/037402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$
Gargee Sharma**, Smita Sharma**
Department of Physics, Government Dungar College, Rajasthan, India
Cite this article:   
Gargee Sharma, Smita Sharma 2018 Chin. Phys. Lett. 35 037402
Download: PDF(571KB)   PDF(mobile)(541KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The screening dependence of superconducting state parameters ($\lambda$, $\mu^{\ast}$, $T_{\rm c}$, $\alpha$ and $N_{0}V$) of six alloys of aluminium doped MgB$_{2}$ systems are studied in the BCS–Eliashberg–McMillan framework by employing five forms of dielectric screening function, viz. random phase approximation (RPA), Harrison, Geldart and Vosko (GV), Hubbard and Overhauser in conjunction with Ashcroft's potential. It is observed that electron-phonon coupling strength $\lambda$ and Coulomb pseudopotential $\mu^{\ast}$ are quite sensitive to the form of dielectric screening, whereas transition temperature $T_{\rm c}$, isotope effect exponent $\alpha$ and effective interaction strength $N_{0}V$ show weak dependence on the form of dielectric screening function. It is found that the RPA form of dielectric screening function yields the best results for transition temperature $T_{\rm c}$ for all alloys of the Mg-Al-B system. The results obtained using GV screening are much higher than the experimental results. This shows that all the four dielectric screenings used here almost describe superconductivity in all the alloys of the Mg-Al-B system, but the GV screening is not suitable for such an alloy system.
Received: 13 May 2017      Published: 25 February 2018
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.70.Ad (Metals; alloys and binary compounds)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  74.62.-c (Transition temperature variations, phase diagrams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/037402       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/037402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gargee Sharma
Smita Sharma
[1]Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[2]Cava R J, Zandbergen H W and Inumaru K 2003 Physica C 38 8
[3]Toulemonde, Musolino N and Flukiger R 2003 Supercond. Sci. Technol. 16 231
[4]Xu G J, Grivel J C, Abrahamsen A B, Chen X P and Andersen N H 2003 Physica C 399 8
[5]Slusky J S, Rogado N, Regan K A, Hayward M A, Khalifah P, Inumaru K, Loureiro S M, Haas M K and Cava R J 2001 Nature 410 16
[6]Berenov A, Bugoslavksy Y and MacManus J L European Conference on Applied Superconductivity (Naples 14–18 September 2004)
[7]Zhao Y G, Zhang X P, Qiao P T, Zhang H T, Jia S J, Cao B S, Zhu M H, Han Z H, Wang X L and Gu B L 2001 Physica C 361 91
[8]Tampieri A, Cellotti G, Sprio S, Rinaldi D, Barucca G and Caciuffo R 2002 Solid State Commun. 121 497
[9]Xiang J Y, Zheng D N, Li J Q, Li S L, Wen H and Zhao Z X 2003 Physica C 386 611
[10]Lorenz B, Meng R L, Xue Y Y and Chu C W 2001 arXiv:cond-mat/0105212
[11]Karpinski J, Zhigadlo N D, Schuck G, Kazakov S M, Batlogg B, Rogacki K, Puzniak R, Jun J, Müller E et al 2005 Phys. Rev. B 71 174506
[12]Ashcroft N W 1966 Phys. Lett. 23 148
[13]Saxena N S, Bhandari D, Pratap A and Saksena M P 1990 J. Phys.: Condens. Matter 2 9475
[14]Kachhava C M 1972 Phys. Stat. Sol. (b) 52 547
[15]Sharma R, Sharma K S and Dass L 1986 Czech. J. Phys. 36 719
[16]Vora A M 2012 Adv. Mater. Lett. 3 321
[17]Gellmann M and Brueckner K A 1957 Phys. Rev. 106 364
[18]Harrison W A 1966 Pseudopotentials in the Theory of Metals (New York: Benjamin WA Inc.)
[19]Geldart D J W and Vosko S H 1966 Can. J. Phys. 44 2137
[20]Hubbard J A 1957 Proc. R. Soc. London A 240 539
Hubbard J A 1958 Proc. R. Soc. London A 243 336
Hubbard J A 1965 Proc. R. Soc. London 283 33
[21]Agarwal P C, Aze K A and Kachhava C M 1993 Phys. Stat. Sol. (b) 178 303
[22]McMillan W L 1968 Phys. Rev. 167 331
[23]Sharma S, Khan H and Sharma K S 2004 Phys. Stat. Sol. (b) 241 2562
[24]Quiquia J B, Lauinger C, Zoraghi M, Stiller M, Sharma S and Häussler P 2017 Supercond. Sci. Technol. 30 015013
[25]Sharma S and Sharma G AFMA (Rajasthan 11–12 December 2016) p 138
[26]Sharma K S, Bhargava N, Jain R, Goyal V, Sharma R and Sharma S 2010 Ind. J. Pure & Appl. Phys. 48 59
[27]Grimvall G 1986 Thermodynamic Properties of Materials (Amsterdam: North Holland)
[28]Luo H, Li C M, Luo H M and Ding S Y 2002 J. Appl. Phys. 91 7122
[29]Postorino, Congeduti A, Dore P, Nucara A, Bianconi A, Castro D, Negri S and Saccone A 2001 Phys. Rev. B 65 020507
[30]Putti M, Affronte M, Manfrinetti P and Palenzona A 2003 Phys. Rev. B 68 94514
[31]Chavarria S R, Tavizon G and de la Mora P 2006 arXiv:cond-mat/0606019v1
[32]O de la Peña, Aguayo A and de Coss R 2002 Phys. Rev. B 66 012511
[33]Holder A B and Bianconi A 2003 Phys. Rev. B 67 132509
[34]Zambano A J, Moodenbaugh A R and Cooley L D 2005 arXiv:cond-mat/0507041
[35]Sharma G 2016 Int. J. Sci. Engg. Res. 7 1056
[36]Renker B, Bohnen K B, Heid R, Ernst D, Schober H, Koza M, Adelmann P, Schweiss P and Wolf T 2002 Phys. Rev. Lett. 88 067001
[37]Balaselvi S J, Bharathi A, Sastry V S, Reddy G L N and Hariharan Y 2002 arXiv:cond-mat/0209200
[38]Ummarino G A, Gonnelli R S, Massidda S and Bianconi A 2004 Physica C 407 121
[39]Monni M, Ferdeghini C, Putti M, Manfrinetti P, Palenzona A, Affronte M, Postorino P, Lavagnini M, Sacchetti A, Castro D D, Sacchetti F, Petrillo C and Orecchini A 2006 Phys. Rev. B 73 214508
[40]Bianconi A, Agrestini S, Castro D D, Campi G, Zangari G, Saini N L, Saccone A and Nigri S D 2002 Phys. Rev. B 65 174515
[41]Gonnelli R S, Daghero D, Ummarino G A, Calzolari A, Dellarocca V, Stepanov A, Jun J and Karpinsky J 2006 J. Phys. Chem. Solids 67 360
[42]Li A H, Wang X L, Dou S X, Yao Q W, Cheng Z X, Soltanian S, Yoo J M and Munroe P 2008 J. Appl. Phys. 103 07C713
[43]Klie R F, Zheng J C and Zhu Y 2006 Phys. Rev. B 73 014513
[44]Chavarria S R, Tavizon G and Mora D P 2006 arXiv:Cond-mat/0606019
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 037402
[2] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 037402
[3] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 037402
[4] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 037402
[5] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 037402
[6] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 037402
[7] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 037402
[8] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 037402
[9] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 037402
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 037402
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 037402
[12] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 037402
[13] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 037402
[14] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 037402
[15] Aditya M. Vora. Superconducting State Parameters of CuCZr100-C Binary Amorphous Alloys by Pseudopotential Approach[J]. Chin. Phys. Lett., 2007, 24(9): 037402
Viewed
Full text


Abstract