Chin. Phys. Lett.  2018, Vol. 35 Issue (3): 037501    DOI: 10.1088/0256-307X/35/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach
Erhan Albayrak**
Erciyes University, Department of Physics, Kayseri 38039, Turkey
Cite this article:   
Erhan Albayrak 2018 Chin. Phys. Lett. 35 037501
Download: PDF(521KB)   PDF(mobile)(504KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermodynamic properties of the mixed spin-1 and spin-1/2 Ising–Heisenberg model are studied on a honeycomb lattice using a new approach in the mean-field approximation to analyze the effects of longitudinal $D_z$ and transverse $D_x$ crystal fields. The phase diagrams are calculated in detail by studying the thermal variations of the order parameters, i.e., magnetizations and quadrupole moments, and compared with the literature to assess the reliability of the new approach. It is found that the model yields both second- and first-order phase transitions, and tricritical points. The compensation behavior of the model is also investigated for the sublattice magnetizations, and longitudinal and transverse quadrupolar moments. The latter type of compensation is observed in the literature but its possible importance is overlooked.
Received: 28 August 2017      Published: 25 February 2018
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  05.50.+q (Lattice theory and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/3/037501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I3/037501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Erhan Albayrak
[1]Jiang W, Xiao G B, Wei G Z, Du A and Zhang Q 2004 Commun. Theor. Phys. 41 131
[2]Belmamoun Y and Kerouad M 2008 Phys. Scr. 77 025706
[3]Boughrara M and Kerouad M 2007 Physica A 374 669
[4]Htoutou K, Ainane A and Saber M 2004 J. Magn. Magn. Mater. 269 245
[5]Jiang W, Wei G Z and Du A 2002 J. Magn. Magn. Mater. 250 49
[6]Xu C Q and Yan S L 2016 J. Magn. Magn. Mater. 416 48
[7]Xu C Q and Yan S L 2013 J. Magn. Magn. Mater. 345 261
[8]Wu H, Wei G, Zhang P, Yi G and Gong W 2010 J. Magn. Magn. Mater. 322 3502
Wu H, Wei G, Du A, Yi G and Gong W 2011 J. Magn. Magn. Mater. 323 1428
Wu H, Wei G and Yi G 2008 Phys. Lett. A 372 6531
[9]Oitmaa J and von Brasch A M A 2003 Phys. Rev. B 67 172402
[10]Bobák A, Pokorný V and Dely J 2009 Physica A 388 2157
[11]Bobák A, Dely J and Žukovič M 2011 Physica A 390 1953
[12]Čanová L and Strečka J 2010 Phys. Status Solidi B 247 433
[13]Gálisová L and Strečka J 2011 Condens. Matter Phys. 14 13002:1-11
[14]Hu A Y and Zhang A J 2016 J. Magn. Magn. Mater. 399 22
[15]Čanová L, Strečka J and Lučivjanský T 2009 Condens. Matter Phys. 12 353
[16]Hu A Y and Wang H Y 2016 Mater. Res. Express 3 036105
[17]Albayrak E 2017 J. Supercond. Novel Magn. 30 2555
Albayrak E 2017 Physica A 486 161
[18]Bobák A, Pokorny V and Dely J 2010 J. Phys.: Conf. Ser. 200 022001
[19]Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[20]Jiang W, Wei G Z, Du A and Guo L Q 2002 Physica A 313 503
[21]Eddeqaqi N C, Saber M, El-Atri A and Kerouad M 1999 Physica A 272 144
[22]Carvalho D C and Plascak J A 2015 Physica A 432 240
[23]Albayrak E and Keskin M 2003 J. Magn. Magn. Mater. 261 196
[24]Gonçalves L L 1985 Phys. Scr. 32 248
ibid 1986 Phys. Scr. 33 192
[25]Da Silva N R and Salinas S R 1991 Phys. Rev. B 44 852
[26]Buendia G M, Novotny M A and Zhang J 1994 Springer Proceeds in Phys. 78 223
Buendia G M and Novotny M A 1997 J. Phys.: Condens. Matter 9 5951
[27]De Resende H F V, Sa Barreto F C and Plascak J A 1988 Physica A 149 606
[28]Bouhou S, Essaoudi I, Ainane A, Saber M, de Miguel J J and Kerouad M 2012 Chin. Phys. Lett. 29 016101
[29]Costabile E, Viana J R, de Sousa J R and de Arruda A S 2015 Solid State Commun. 212 30
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 037501
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 037501
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 037501
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 037501
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 037501
[6] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 037501
[7] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 037501
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 037501
[9] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 037501
[10] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 037501
[11] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 037501
[12] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 037501
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 037501
[14] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 037501
[15] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 037501
Viewed
Full text


Abstract