Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 026103    DOI: 10.1088/0256-307X/35/2/026103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Influence of Flexoelectric Effect on Director Alignment of Nematic Liquid Crystals in Axial Arrangement Cylindrical Cells
Hong-Hong Liu1, Yan-Jun Zhang1,2**, Huai-Rui Yue1, Li-Zhi Zhu3, Rui-Xia Yang2
1Department of Physics, Hebei University of Technology, Tianjin 300401
2School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401
3Department of Wood Science and Technology, Tianjin University of Science and Technology, Tianjin 300222
Cite this article:   
Hong-Hong Liu, Yan-Jun Zhang, Huai-Rui Yue et al  2018 Chin. Phys. Lett. 35 026103
Download: PDF(531KB)   PDF(mobile)(528KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A positive nematic liquid crystal (5CB) sample is confined in cylindrical cells under strong or weak axial anchoring boundary conditions when a radial nonuniform low-frequency electric field is applied and the flexoelectric effect is taken into account. Based on the Frank elastic free energy, the surface energy of the Rapini–Papoular approximation, the polarization free energy and the flexoelectric free energy caused by electric field, we obtain the free energy density of the nematic and solve the corresponding Euler–Lagrange equation numerically. We investigate the director distribution, the critical voltage and the critical exponent of nematic liquid crystal in cylindrical cells. It follows that the critical exponent is the classical one. It is also shown that the critical voltage in the system is affected by the flexoelectric effect, the geometric effect and radial weak anchoring effect on the cylindrical surfaces. A new type of director transition caused by the flexoelectric effect, the dielectric coupling effect and the radial weak anchoring effect is found.
Received: 19 October 2017      Published: 23 January 2018
PACS:  61.30.Dk (Continuum models and theories of liquid crystal structure)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/026103       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/026103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Hong Liu
Yan-Jun Zhang
Huai-Rui Yue
Li-Zhi Zhu
Rui-Xia Yang
[1]Souza R T D, Dias J C and Mendes R S et al 2010 Physica A 389 945
[2]Corellamadueño A, Castellanosmoreno A, Gutiérrezlópez S et al 2008 Phys. Rev. E 78 022701
[3]De Gennes P G and Prost J 1993 The Physics of Liquid Crystals (Oxford: Oxford University Press)
[4]Williams D R M 1994 Phys. Rev. E 50 1686
[5]Heuer H, Kneppe H and Schneider F 1991 Liq. Cryst. 200 51
[6]Cladis P E and Kléman M 1972 J. Phys. 33 591
[7]Allender D W, Crawford G P and Doane J W 1991 Phys. Rev. Lett. 67 1442
[8]Crawford G P, Allender D W and Doane J W 1992 Phys. Rev. A 45 8693
[9]Kralj S and Zumer S 1995 Phys. Rev. E 51 366
[10]Burylov S V 1997 J. Exp. Theor. Phys. 85 873
[11]Chen S and Wei J 1994 J. Appl. Phys. 75 2799
[12]Halevi P, Reyes-Avendaño J A and Reyes-Cervantes J A 2006 Phys. Rev. E 73 040701
[13]Kotov I V, Khazimullin M V and Krekhov A P 2001 Mol. Cryst. Liq. Cryst. 366 885
[14]Tsuru H and Wadati M 1984 J. Phys. Soc. Jpn. 53 2908
[15]Williams D R and Halperin A 1993 Phys. Rev. E 48 R2366
[16]Carlsson T, Stewart I W and Leslie F M 1991 Liq. Cryst. 9 661
[17]Williams C E, Cladis P E and Kleman M 1973 Mol. Cryst. Liq. Cryst. 21 355
[18]Meyer R B 1969 Phys. Rev. Lett. 22 918
[19]Aoki N, Ohki Y and Yahagi K 1979 Jpn. J. Appl. Phys. 18 523
[20]Alexe-Ionescu A L, Barbero G and Petrov A G 1993 Phys. Rev. E 48 R1631
[21]Wang Q 2001 Acta Sin. Phys. 50 931 (in Chinese)
[22]Song H W, Ye W J, Zhang Z D et al 2016 Chin. Phys. B 25 036101
[23]Ye W J, Xing H Y, Cui W J et al 2014 Chin. Phys. B 23 116101
[24]Pizzirusso A, Berardi R, Muccioli L et al 2012 Chem. Sci. 3 573
[25]Rapini A and Papoular M 1969 J. Phys. Paris. C 30 C4-54
[26]Xing H Y, An Y S, Wang M Y et al 2015 Acta Phys. Sin. 64 194206 (in Chinese)
[27]Takahashi T, Hashidate S, Nishijou H et al 1998 Jpn. J. Appl. Phys. 37 1865
[28]Barbero G and Evangelista L R 2001 An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (Singapore: World Scientific)
[29]Liu H H and Zhang Y J 2017 Chin. J. Liq. Cryst. Disp. 32 13
Viewed
Full text


Abstract