Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 024301    DOI: 10.1088/0256-307X/35/2/024301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound
Jie Hu1,2**, Bin Liang1, Xiao-Jun Qiu3
1Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Nanjing University, Nanjing 210023
2College of Information Science and Technology, Nanjing Forestry University, Nanjing 210000
3Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
Cite this article:   
Jie Hu, Bin Liang, Xiao-Jun Qiu 2018 Chin. Phys. Lett. 35 024301
Download: PDF(672KB)   PDF(mobile)(669KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment. However, the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges. We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves. Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy weight, we simply use xenon to fill a spatial region of asymmetric shape which allows the incident plane wave to pass along one direction while reflecting the reversed wave regardless of frequency. We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band. Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.
Received: 27 October 2017      Published: 23 January 2018
PACS:  43.20.+g (General linear acoustics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11634006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/024301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/024301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Hu
Bin Liang
Xiao-Jun Qiu
[1]Liang B, Guo X S, Tu J et al 2010 Nat. Mater. 9 989
[2]Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[3]Zhu X F, Zou X Y, Liang B et al 2010 J. Appl. Phys. 108 124909
[4]Li Y, Tu J, Liang B et al 2012 J. Appl. Phys. 112 064504
[5]Li R Q, Liang B, Li Y et al 2012 Appl. Phys. Lett. 101 263502
[6]Li Y, Liang B, Gu Z M et al 2013 Appl. Phys. Lett. 103 053505
[7]Zhu Y F, Zou X Y, Liang B et al 2015 Appl. Phys. Lett. 106 173508
[8]Liang Z X and Li J 2012 Phys. Rev. Lett. 108 114301
[9]Viard N, Gallardo C, Xu J et al 2015 J. Acoust. Soc. Amer. 138 1752
[10]Cummer S 2017 J. Acoust. Soc. Am. 141 3451
[11]Zhang S, Yin L L and Fang N 2009 Phys. Rev. Lett. 102 194301
[12]Li J and Chan C T 2004 Phys. Rev. E 70 055602
[13]Liu Z, Zhang X, Mao Y et al 2000 Science 289 1734
[14]Fok L, Ambati M and Zhang X 2008 MRS Bull. 33 931
[15]Yang Z, Mei J, Yang M et al 2008 Phys. Rev. Lett. 101 204301
[16]Maldovan M 2013 Nature 503 209
[17]Fleury R, Sounas D L, Sieck C F et al 2014 Science 343 516
[18]He Z, Peng S, Ye Y et al 2011 Appl. Phys. Lett. 98 083505
[19]Zhu X, Ramezani H, Shi C et al 2014 Phys. Rev. X 4 031042
[20]Peng Y G, Qin C Z, Zhao D G et al 2016 Nat. Commun. 7 13368
[21]Peng Y G, ShenY X, Zhao D G et al 2017 Appl. Phys. Lett. 110 173505
[22]Popa B I and Cummer S A 2014 Nat. Commun. 5 3398
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 024301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 024301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 024301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 024301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 024301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 024301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 024301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 024301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 024301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 024301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 024301
[12] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 024301
[13] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 024301
[14] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 024301
[15] ZHANG Hai-Yan, XU Jian, MA Shi-Wei. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory[J]. Chin. Phys. Lett., 2015, 32(08): 024301
Viewed
Full text


Abstract