FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound |
Jie Hu1,2**, Bin Liang1, Xiao-Jun Qiu3 |
1Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Nanjing University, Nanjing 210023 2College of Information Science and Technology, Nanjing Forestry University, Nanjing 210000 3Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
|
|
Cite this article: |
Jie Hu, Bin Liang, Xiao-Jun Qiu 2018 Chin. Phys. Lett. 35 024301 |
|
|
Abstract Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment. However, the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges. We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves. Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy weight, we simply use xenon to fill a spatial region of asymmetric shape which allows the incident plane wave to pass along one direction while reflecting the reversed wave regardless of frequency. We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band. Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.
|
|
Received: 27 October 2017
Published: 23 January 2018
|
|
PACS: |
43.20.+g
|
(General linear acoustics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11634006. |
|
|
[1] | Liang B, Guo X S, Tu J et al 2010 Nat. Mater. 9 989 | [2] | Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301 | [3] | Zhu X F, Zou X Y, Liang B et al 2010 J. Appl. Phys. 108 124909 | [4] | Li Y, Tu J, Liang B et al 2012 J. Appl. Phys. 112 064504 | [5] | Li R Q, Liang B, Li Y et al 2012 Appl. Phys. Lett. 101 263502 | [6] | Li Y, Liang B, Gu Z M et al 2013 Appl. Phys. Lett. 103 053505 | [7] | Zhu Y F, Zou X Y, Liang B et al 2015 Appl. Phys. Lett. 106 173508 | [8] | Liang Z X and Li J 2012 Phys. Rev. Lett. 108 114301 | [9] | Viard N, Gallardo C, Xu J et al 2015 J. Acoust. Soc. Amer. 138 1752 | [10] | Cummer S 2017 J. Acoust. Soc. Am. 141 3451 | [11] | Zhang S, Yin L L and Fang N 2009 Phys. Rev. Lett. 102 194301 | [12] | Li J and Chan C T 2004 Phys. Rev. E 70 055602 | [13] | Liu Z, Zhang X, Mao Y et al 2000 Science 289 1734 | [14] | Fok L, Ambati M and Zhang X 2008 MRS Bull. 33 931 | [15] | Yang Z, Mei J, Yang M et al 2008 Phys. Rev. Lett. 101 204301 | [16] | Maldovan M 2013 Nature 503 209 | [17] | Fleury R, Sounas D L, Sieck C F et al 2014 Science 343 516 | [18] | He Z, Peng S, Ye Y et al 2011 Appl. Phys. Lett. 98 083505 | [19] | Zhu X, Ramezani H, Shi C et al 2014 Phys. Rev. X 4 031042 | [20] | Peng Y G, Qin C Z, Zhao D G et al 2016 Nat. Commun. 7 13368 | [21] | Peng Y G, ShenY X, Zhao D G et al 2017 Appl. Phys. Lett. 110 173505 | [22] | Popa B I and Cummer S A 2014 Nat. Commun. 5 3398 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|