Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 024204    DOI: 10.1088/0256-307X/35/2/024204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams
J. Shiri1**, F. Shahi2, M. R. Mehmannavaz3, L. Shahrassai2
1Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2Department of Atomic and Molecular Physics, University of Tabriz, Tabriz, Iran
3Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Cite this article:   
J. Shiri, F. Shahi, M. R. Mehmannavaz et al  2018 Chin. Phys. Lett. 35 024204
Download: PDF(646KB)   PDF(mobile)(641KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure. We show that in the presence of the Gaussian laser beams, absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams. Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time. The estimated range is between 5–8 ps for subluminal to superluminal light propagation.
Received: 31 October 2017      Published: 23 January 2018
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/024204       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/024204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
J. Shiri
F. Shahi
M. R. Mehmannavaz
L. Shahrassai
[1]Birkedal D, Leosson K and Hvam J M 2001 Phys. Rev. Lett. 87 227401
[2]Petta J R 2005 Science 309 2180
[3]Openov L A 1999 Phys. Rev. B 60 8798
[4]Kosionis S G, Terzis A F and Paspalakis E 2007 Phys. Rev. B 75 193305
[5]Sahrai M, Mehmannavaz M R and Sattari H 2014 Appl. Opt. 53 2375
[6]Wang Z 2011 Ann. Phys. (N. Y.) 326 340
[7]Che C, Han Q, Ma J, Zhou Y, Yu S and Tan L 2012 Laser Phys. 22 1317
[8]Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 53809
[9]Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and Bimberg D 2002 Phys. Rev. B 66 81306
[10]Bortman-Arbiv D, Wilson-Gordon A D and Friedmann H 2001 Phys. Rev. A 63 43818
[11]Ghulghazaryan R G and Malakyan Y P 2003 Phys. Rev. A 67 63806
[12]Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[13]Shiri J and Malakzadeh A 2017 J. Lasers Opt. Photon. 4 154
[14]Wang L J, Kuzmich A and Dogariu A 2001 Nature 411 974
[15]Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B T and Zhu S Y 1992 Phys. Rev. A 46 1468
[16]Pelton M, Santori C, Vucčković J, Zhang B, Solomon G S, Plant J and Yamamoto Y 2002 Phys. Rev. Lett. 89 233602
[17]Sahrai M, Abbasabadi M, Khoshsima H and Kheradmand R 2017 Opt. Quantum Electron. 49 367
[18]Shiri J and Malakzadeh A 2017 Laser Phys. 27 16201
[19]Shiri J and Malakzadeh A 2017 J. Eur. Opt. Soc. Publ. 13 19
[20]Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L and Gossard A C 1995 Phys. Rev. Lett. 75 705
[21]Chow W W, Schneider H C and Phillips M C 2003 Phys. Rev. A 68 53802
[22]Villas-Bôas J M, Govorov A O and Ulloa S E 2004 Phys. Rev. B 69 125342
[23]Yang W X, Chen A X, Zha T T and Lee R K 2009 J. Phys. B 42 225501
[24]Yang W X, Hou J M, Lin Y and Lee R K 2009 Phys. Rev. A 79 33825
[25]Yang W X, Liu S, Zhu Z, Ziauddin and Lee R K 2015 Opt. Lett. 40 3133
[26]Yang W X, Yang X and Lee R K 2009 Opt. Express 17 15402
[27]Zhao S C, Zhang S Y, Wu Q X and Jia J 2015 Chin. Phys. Lett. 32 058104
[28]Zhang L Y, Hu H J, Yang X, Cao M T, Wei D, Zhang P, Gao H and Li F L 2016 Chin. Phys. Lett. 33 124203
[29]Nasehi R, Asadpour S H, Soleimani H R and Mahmoudi M 2016 Chin. Phys. Lett. 33 014204
[30]Jiang L, Wan R G and Yao Z H 2016 Chin. Phys. B 25 104204
[31]Rastelli A, Stufler S, Schliwa A, Songmuang R, Manzano C, Costantini G, Kern K, Zrenner A, Bimberg D and Schmidt O G 2004 Phys. Rev. Lett. 92 166104
[32]Shiri J 2016 Laser Phys. 26 56202
[33]Bardeen J 1961 Phys. Rev. Lett. 6 57
[34]Reittu H J 1995 Am. J. Phys. 63 940
[35]Kapale K T, Scully M O, Zhu S Y and Zubairy M S 2003 Phys. Rev. A 67 23804
[36]Yan W, Wang T, Li X M and Jin Y J 2012 J. Mod. Opt. 59 784
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 024204
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 024204
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 024204
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 024204
[5] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 024204
[6] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 024204
[7] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 024204
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 024204
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 024204
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 024204
[11] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 024204
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 024204
[13] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 024204
[14] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 024204
[15] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 024204
Viewed
Full text


Abstract