Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 020501    DOI: 10.1088/0256-307X/35/2/020501
GENERAL |
Interaction between Breathers and Rogue Waves in a Nonlinear Optical Fiber
Xiang-Shu Liu1,2, Li-Chen Zhao1,3, Liang Duan1,3, Peng Gao1,3, Zhan-Ying Yang1,3**, Wen-Li Yang3,4
1School of Physics, Northwest University, Xi'an 710069
2Faculty of Science, Qinzhou University, Qinzhou 535000
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069
4Institute of Modern Physics, Northwest University, Xi'an 710069
Cite this article:   
Xiang-Shu Liu, Li-Chen Zhao, Liang Duan et al  2018 Chin. Phys. Lett. 35 020501
Download: PDF(1255KB)   PDF(mobile)(1239KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the interaction between breather and $N$-order rogue waves in a nonlinear optical fiber. The impacts of the relative phase and the interaction distance between breathers and rogue waves are discussed in detail. Specifically, the breather can reduce the maximum hump value of high-order rogue waves greatly in the cases of nonzero relative phase or nonzero interaction distance. The characteristic of exclusion between breathers and rogue waves is described qualitatively in the situation of different interaction distances, which can be used to change the temporal-spatial distribution of rogue waves. Their interaction properties are characterized by the trajectory of localized waves' valleys and humps. It is shown that the interaction changes the dynamical evolution trajectory of rogue waves and breathers. These results provide some possible ways to control high-order rogue waves.
Received: 18 September 2017      Published: 23 January 2018
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11475135, the Guangxi Provincial Education Department Research Project of China under Grant No 2017KY0776, the Shaanxi Provincial Science Association of Colleges and Universities of China under Grant No 20160216, and the Special Research Project of Education Department of Shaanxi Provincial Government under Grant No 16JK1763.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/020501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Shu Liu
Li-Chen Zhao
Liang Duan
Peng Gao
Zhan-Ying Yang
Wen-Li Yang
[1]Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[2]Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[3]Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
[4]Erkintalo M, Genty G and Dudley J M 2009 Opt. Lett. 34 2468
[5]Dai C Q, Chen R P, Wang Y Y and Fan Y 2017 Nonlinear Dyn. 87 1675
[6]Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E 93 062217
[7]Zhong W P, Xie R H, Beli M, Petrovi N, Chen G and Yi L 2008 Phys. Rev. A 78 023821
[8]Yang G, Wang Y, Qin Z, Malomed B A, Mihalache D and Li L 2014 Phys. Rev. E 90 062909
[9]Porsezian K and Nakkeeran K 1995 Phys. Rev. Lett. 74 2941
[10]Zakharov V and Shabat A 1974 Funct. Anal. Appl. 8 226
[11]Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[12]Liu W J, Zhang Y, Pang L, Yan H, Ma G and Lei M 2016 Nonlinear Dyn. 86 1069
[13]Duan L, Yang Z Y, Liu C and Yang W L 2016 Chin. Phys. Lett. 33 010501
[14]Yan Z and Dai C 2013 J. Opt. 15 064012
[15]Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[16]Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[17]Xu T, Wang D H, Li M and Liang H 2014 Phys. Scr. 89 075207
[18]Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[19]Solli D R, Ropers C and Jalali B 2008 Phys. Rev. Lett. 101 233902
[20]Dudley J M, Genty G and Eggleton B J 2008 Opt. Express 16 3644
[21]Van Simaeys G, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902
[22]Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[23]Kibler B, Fatome J, Fnot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463
[24]Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[25]Chabchoub A, Hoffmann N P, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 011015
[26]Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[27]Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Rev. A 80 043818
[28]Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[29]He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914
[30]Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[31]Liu C, Yang Z Y, Zhao L C and Yang W L 2014 Phys. Rev. A 89 055803
[32]Wang X, Li Y and Chen Y 2014 Wave Motion 51 1149
[33]Chen S and Song L Y 2013 Phys. Rev. E 87 032910
[34]Wu Z K et al 2014 Chin. Phys. Lett. 31 090502
[35]Yu W F et al 2014 Chin. Phys. Lett. 31 070203
[36]Kivshar Y S and Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)
[37]Jisha C P, Alberucci A, Lee R K and Assanto G 2013 Opt. Express 21 18646
[38]Belyaeva T L and Serkin V N 2012 Eur. Phys. J. D 66 153
[39]Akhmediev N and Ankiewicz A 1993 Opt. Commun. 100 186
[40]Helm J L, Cornish S L and Gardiner S A 2015 Phys. Rev. Lett. 114 134101
[41]Zhao L C, Ling L M, Yang Z Y and Liu J 2016 Nonlinear Dyn. 83 659
[42]Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[43]Frisquet B, Kibler B and Millot G 2013 Phys. Rev. X 3 041032
[44]Kuznetsov E A 1977 Akademiia Nauk SSSR Dokl. 236 575
[45]Ma Y C 1979 Stud. Appl. Math. 60 43
[46]Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[47]Shabat A and Zakharov V 1972 Sov. Phys. JETP 34 62
[48]Fernandez A, Fuji T, Poppe A, Fürbach A, Krausz F and Apolonski A 2004 Opt. Lett. 29 1366
[49]Ling L M and Zhao L C 2013 Phys. Rev. E 88 043201
[50]Wang L, Feng X Q and Zhao L C 2014 Opt. Commun. 329 135
[51]Kedziora D J, Ankiewicz A and Akhmediev N 2013 Phys. Rev. E 88 013207
[52]Ankiewicz A and Akhmediev N 2017 Rom. Rep. Phys. 69 104
[53]Ankiewicz A, Kedziora D J and Akhmediev N 2011 Phys. Lett. A 375 2782
[54]Kedziora D J, Ankiewicz A and Akhmediev N 2011 Phys. Rev. E 84 056611
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 020501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 020501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 020501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 020501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 020501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 020501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 020501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 020501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 020501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 020501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 020501
Viewed
Full text


Abstract