Chin. Phys. Lett.  2018, Vol. 35 Issue (12): 127402    DOI: 10.1088/0256-307X/35/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermal conductivity in near-nodal superconductors
Hui Meng1, Huan Zhang1, Wan-Sheng Wang2, Qiang-Hua Wang1,3**
1National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093
2Department of Physics, Ningbo University, Ningbo 315211
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Hui Meng, Huan Zhang, Wan-Sheng Wang et al  2018 Chin. Phys. Lett. 35 127402
Download: PDF(515KB)   PDF(mobile)(505KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The universal behavior of thermal conductivity at low temperatures is usually taken as the signature of gap nodes in superconductors. Here we show that in near-nodal superconductors the thermal conductivity obeys a two-parameter scaling law, and can develop super-universal behavior if the temperature is about half the gap minimum. However, when the temperature is fixed at about one quarter of the gap minimum, the thermal conductivity can develop a dip versus the scattering rate, which is in excellent agreement with the behavior of the experimental thermal conductivity in Sr$_2$RuO$_4$. Our theory is useful to correctly analyze the thermal conductivity in any near-nodal superconductor.
Received: 16 October 2018      Published: 23 November 2018
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.20.-z (Theories and models of superconducting state)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300401, and the National Natural Science Foundation of China under Grant Nos 11574134 and 11604168.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/12/127402       OR      https://cpl.iphy.ac.cn/Y2018/V35/I12/127402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Meng
Huan Zhang
Wan-Sheng Wang
Qiang-Hua Wang
[1]Durst A C and Lee P A 2000 Phys. Rev. B 62 1270
[2]Stewart G R 2011 Rev. Mod. Phys. 83 1589
[3]Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532
[4]Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[5]Murakawa H, Ishida K, Kitagawa K, Mao Z Q and Maeno Y 2004 Phys. Rev. Lett. 93 167004
[6]Ishida K, Manago M, Yamanaka T, Fukazawa H, Mao Z Q, Maeno Y and Miyake K 2015 Phys. Rev. B 92 100502(R)
[7]Manago M, Ishida K, Mao Z Q and Maeno Y 2016 Phys. Rev. B 94 180507(R)
[8]Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori Y, Nakamura H and Sigrist M 1998 Nature 394 558
[9]Xia J, Maeno Y, Beyersdorf P T, Fejer M M and Kapitulnik A 2006 Phys. Rev. Lett. 97 167002
[10]Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[11]Nishizaki S, Maeno Y and Mao Z Q 1999 J. Low Temp. Phys. 117 1581
[12]Nishizaki S, Maeno Y and Mao Z Q 2000 J. Phys. Soc. Jpn. 69 572
[13]Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett. 92 047002
[14]Bonalde I, Yanoff B D, Salamon M B, Van Harlingen D J, Chia E M E, Mao Z Q and Maeno Y 2000 Phys. Rev. Lett. 85 4775
[15]Ishida K, Mukuda H, Kitaoka Y, Mao Z Q, Mori Y and Maeno Y 2000 Phys. Rev. Lett. 84 5387
[16]Suderow H, Brison J P, Flouquet J, Tyler A W and Maeno Y 1998 J. Phys.: Condens. Matter 10 L597
[17]Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[18]Hassinger E, Bourgeois-Hope P, Taniguchi H, René de Cotret S, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N and Taillefer L 2017 Phys. Rev. X 7 011032
[19]Wang W S, Zhang C C, Zhang F C and Wang Q H 2018 arXiv:1808.09210
[20]Xiang T 2007 D-wave Superconductivity (Beijing: Science Press of China) (in Chinese)
Related articles from Frontiers Journals
[1] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 127402
[2] Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl[J]. Chin. Phys. Lett., 2018, 35(9): 127402
[3] Shu-Ping Deng, Feng Cheng, De-Cong Li, Yu Tang, Zhong Chen, Lan-Xian Shen, Hong-Xia Liu, Pei-Zhi Yang, Shu-Kang Deng. Electrical Transport Properties of Type-VIII Sn-Based Single-Crystalline Clathrates (Eu/Ba)$_{8}$Ga$_{16}$Sn$_{30}$ Prepared by Ga Flux Method[J]. Chin. Phys. Lett., 2017, 34(4): 127402
[4] Chuan-Chuan Gu, Xu-Liang Chen, Chen Shen, Lang-Sheng Ling, Li Pi, Zhao-Rong Yang, Yu-Heng Zhang. Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr$_{2}$S$_{4}$[J]. Chin. Phys. Lett., 2016, 33(06): 127402
[5] HONG Xiao-Chen, WANG Ai-Feng, ZHANG Zhen, PAN Jian, HE Lan-Po, LUO Xi-Gang, CHEN Xian-Hui, LI Shi-Yan. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1?xKxFe2As2: a Heat Transport Study[J]. Chin. Phys. Lett., 2015, 32(12): 127402
Viewed
Full text


Abstract