Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 110301    DOI: 10.1088/0256-307X/35/11/110301
GENERAL |
Properties of One-Dimensional Highly Polarized Fermi Gases
Ya-Dong Song1,2, Xiao-Ming Cai1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Ya-Dong Song, Xiao-Ming Cai 2018 Chin. Phys. Lett. 35 110301
Download: PDF(652KB)   PDF(mobile)(641KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using both the exact Bethe ansatz method and the variational method, we study properties of the one-dimensional Fermi polaron. We focus on the binding energy, effective mass, momentum distributions, Tan contact and correlation functions. As the attraction increases, the impurity is more tightly bound and correlated with the surrounding particles, and the size of formed polaron decreases. In addition, compared with the Bethe ansatz method, the variational method is totally qualified to study the one-dimensional Fermi polaron. The intrinsic reason is that the number of particle-hole excitations in a Fermi sea, caused by a single impurity, is always rather small. The variational method can be well extended to other impurity systems.
Received: 08 May 2018      Published: 23 October 2018
PACS:  03.75.Ss (Degenerate Fermi gases)  
  67.85.Lm (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11374331, 11304364 and 11534014.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/110301       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Dong Song
Xiao-Ming Cai
[1]Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2]Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[3]Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
[4]Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
[5]Guan X W , Batchelor M T and Lee C H 2013 Rev. Mod. Phys. 85 1633
[6]Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M and Köhl M 2012 Nature 485 619
[7]Schirotzek A, Wu C H , Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402
[8]Navon N, Nascimbène S, Chevy F and Salomon C 2010 Science 328 729
[9]Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature 485 615
[10]Massignan P, Zaccanti M and Bruun G M 2014 Rep. Prog. Phys. 77 034401
[11]Schmidt R, Sadeghpour H R and Demler E 2016 Phys. Rev. Lett. 116 105302
[12]Yi W and Cui X 2015 Phys. Rev. A 92 013620
[13]Chevy F 2006 Phys. Rev. A 74 063628
[14]Combescot R, Recati A, Lobo C and Chevy F 2007 Phys. Rev. Lett. 98 180402
[15]Combescot R and Giraud S 2008 Phys. Rev. Lett. 101 050404
[16]Catani J, Lamporesi G, Naik D, Gring M, Inguscio M, Minardi F, Kantian A and Giamarchi T 2012 Phys. Rev. A 85 023623
[17]Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C, Bloch I and Kuhr S 2013 Nat. Phys. 9 235
[18]Scelle R, Rentrop T, Trautmann A, Schuster T and Oberthaler M K 2013 Phys. Rev. Lett. 111 070401
[19]Jørgensen N B, Wacker L, Skalmstang K T, Parish M M, Levinsen J, Christensen R S, Bruun G M and Arlt J J 2016 Phys. Rev. Lett. 117 055302
[20]Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett. 117 055301
[21]Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602
[22]Qiao L and Chi C 2017 Chin. Phys. B 26 120304
[23]Nishida Y 2015 Phys. Rev. Lett. 114 115302
[24]Parish M M and Levinsen J 2013 Phys. Rev. A 87 033616
[25]Giraud S and Combescot R 2009 Phys. Rev. A 79 043615
[26]Guan X W 2012 Front. Phys. 7 8
[27]Gharashi S E, Yin X Y, Yan Y and Blume D 2015 Phys. Rev. A 91 013620
[28]Mao R X, Guan X W and Wu B 2016 Phys. Rev. A 94 043645
[29]You Y Z 2010 Chin. Phys. Lett. 27 080305
[30]Wang Y H and Ma Z Q 2012 Chin. Phys. Lett. 29 080501
[31]Yang C N 1967 Phys. Rev. Lett. 19 1312
[32]Gaudin M 1967 Phys. Lett. A 24 55
[33]Tan S 2008 Ann. Phys. 323 2952
[34]Tan S 2008 Ann. Phys. 323 2971
[35]Tan S 2008 Ann. Phys. 323 2987
[36]Doggen E V H and Kinnunen J J 2013 Phys. Rev. Lett. 111 025302
[37]Barth M and Zwerger W 2011 Ann. Phys. 326 2544
[38]McGuire J B 1966 J. Math. Phys. 7 123
[39]Mao L and Wu B 2011 Surf. Sci. 605 1230
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 110301
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 110301
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 110301
[4] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 110301
[5] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 110301
[6] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 110301
[7] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 110301
[8] DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin. All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li[J]. Chin. Phys. Lett., 2015, 32(5): 110301
[9] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 110301
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 110301
[11] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 110301
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 110301
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 110301
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 110301
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 110301
Viewed
Full text


Abstract