Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 110201    DOI: 10.1088/0256-307X/35/11/110201
GENERAL |
Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction
Ya-Hong Hu, Jun-Chao Chen**
Department of Mathematics, Lishui University, Lishui 323000
Cite this article:   
Ya-Hong Hu, Jun-Chao Chen 2018 Chin. Phys. Lett. 35 110201
Download: PDF(444KB)   PDF(mobile)(443KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Solutions to local and nonlocal integrable discrete nonlinear Schrödinger (IDNLS) equations are studied via reduction on the bilinear form. It is shown that these solutions to IDNLS equations can be expressed in terms of the single Casorati determinant under different constraint conditions.
Received: 12 August 2018      Published: 23 October 2018
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11705077.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/110201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Hong Hu
Jun-Chao Chen
[1]Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[2]Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
[3]Fokas A S 2016 Nonlinearity 29 319
[4]Gadzhimuradov T A and Agalarov A M 2016 Phys. Rev. A 93 062124
[5]Lou S Y and Huang F 2017 Sci. Rep. 7 869
[6]Lou S Y 2016 arXiv:1603.03975v2
[7]Yang B and Yang J 2018 Stud. Appl. Math. 140 178
[8]Yan Z Y 2015 Appl. Math. Lett. 47 61
[9]Yan Z Y 2018 Appl. Math. Lett. 79 123
[10]Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
[11]Sarma A K, Miri M A, Musslimani Z H and Christodoulides D N 2014 Phys. Rev. E 89 052918
[12]Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915
[13]Grahovski G G, Mohammed A J and Susanto H 2017 arXiv:1711.08419v1
[14]Li M and Xu T 2015 Phys. Rev. E 91 033202
[15]Zhou Z X 2018 Commun. Nonlinear Sci. Numer. Simul. 62 480
[16]Ji J L and Zhu Z N 2017 Commun. Nonlinear Sci. Numer. Simul. 42 699
[17]Xu T, Li H J, Zhang H J, Li M and Lan S 2017 Appl. Math. Lett. 63 88
[18]Dai C Q and Huang W H 2014 Appl. Math. Lett. 32 35
[19]Yang B and Chen Y 2018 Chaos 28 053104
[20]Yang B and Chen Y 2018 Appl. Math. Lett. 82 43
[21]Ma L Y and Zhu Z N 2016 Appl. Math. Lett. 59 115
[22]Chen K and Zhang D J 2018 Appl. Math. Lett. 75 82
[23]Deng X, Lou S Y and Zhang D J 2018 Appl. Math. Comput. 332 477
[24]Chen K, Deng X, Lou S Y and Zhang D J 2018 Stud. Appl. Math. 141 113
[25]Feng B F, Luo X D, Ablowitz M J and Musslimani Z H 2017 arXiv:1712.09172v1
[26]Maruno K and Ohta Y 2006 J. Phys. Soc. Jpn. 75 054002
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 110201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 110201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 110201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 110201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 110201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 110201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 110201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 110201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 110201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 110201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 110201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 110201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 110201
Viewed
Full text


Abstract