Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 104202    DOI: 10.1088/0256-307X/35/10/104202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser
Wei Wang1,2,3**, Fan-Chao Meng1,3, Yuan Qing1,3, Shi Qiu1,3, Ting-Ting Dong1,3, Wei-Zhen Zhu1,3, Yu-Ting Zuo1,3, Ying Han1,3, Chao Wang4, Yue-Feng Qi1,3, Lan-Tian Hou1,3
1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004
2Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210000
3Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao 066004
4Intelligence and Information Engineering college, Tangshan University, Tangshan 063000
Cite this article:   
Wei Wang, Fan-Chao Meng, Yuan Qing et al  2018 Chin. Phys. Lett. 35 104202
Download: PDF(599KB)   PDF(mobile)(601KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally demonstrate that a tunable supercontinuum (SC) can be generated in a Yb$^{3+}$-doped microstructure fiber by the concept of wavelength conversion with a Ti:sapphire femtosecond (fs) laser as the pump. Experimental results show that an emission light around 1040 nm in an anomalous dispersion region is first generated and amplified by fs pulses in the normal dispersion region. Then, SC spectra from 1100 to 1380 nm and 630 to 840 nm can be achieved by combined effects of higher-order soliton fission and Raman soliton self-frequency shift in the anomalous dispersion region and self-phase modulation, dispersive wave, and four-wave mixing in the normal dispersion region. It is also demonstrated that the 20 nm change of pump results in a 280 nm broadband shift of soliton and the further red-shift of soliton is limited by OH$^{-}$ absorption at 1380 nm.
Received: 26 June 2018      Published: 15 September 2018
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Wi (Nonlinear waveguides)  
  42.81.-i (Fiber optics)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61735011, the Natural Science Foundation of Hebei Province under Grant Nos F2016203389 and F2018105036, the Science and Technology Research Project of College and University in Hebei Province under Grant No BJ2017108, the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing under Grant No KDXS1107, and the Science and Technology Project of Tangshan City under Grant No 17130257a.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/104202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/104202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Wang
Fan-Chao Meng
Yuan Qing
Shi Qiu
Ting-Ting Dong
Wei-Zhen Zhu
Yu-Ting Zuo
Ying Han
Chao Wang
Yue-Feng Qi
Lan-Tian Hou
[1]Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight J C, Wadsworth W J, Russell P S J and Korn G 2002 Phys. Rev. Lett. 88 173901
[2]Tu H H and Boppart S A 2009 Opt. Express 17 9858
[3]Minkovich V P, Pereira M V, Villatoro J, Myslivets E, Sotsky A B, Dzen I S, Illarramendi M A and Zubia J 2016 J. Lightwave Technol. 34 4387
[4]Yuan J H, Kang Z, Li F, Zhou G Y, Zhang X T, Mei C, Sang X Z, Wu Q, Yan B B, Zhou X, Zhong K P, Wang K R, Yu C X, Lu C, Tam H Y and Wai P K A 2017 Sci. Rep. 7 9224
[5]Roy A, Leproux P, Roy P, Auguste J L and Couderc V 2007 J. Opt. Soc. Am. B 24 788
[6]Baselt T, Taudt C, Nelsen B, Lasagni A F and Hartmann P 2016 Proc. SPIE 9731 97310L
[7]Baselt T, Taudt C, Nelsen B, Lasagni A F and Hartmann P 2017 Opt. Eng. 57 021207
[8]Baselt T, Taudt C, Nelsen B, Lasagni A F and Hartmann P 2017 Proc. SPIE 10088 100880E
[9]Louot C, Shalaby B M, Capitaine E, Hilaire S, Leproux P, Pagnoux D and Couderc V 2016 IEEE Photon. Technol. Lett. 28 2011
[10]Barua P, Sekiya E H, Saito K and Ikushima A J 2008 J. Non-Cryst. Solids 354 4760
[11]Pask H M, Carman R J, Hanna D C, Tropper A C, Mackechnie C J, Barber P R and Dawes J M 1995 IEEE J. Sel. Top. Quantum Electron. 1 2
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 104202
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 104202
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 104202
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 104202
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 104202
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 104202
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 104202
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 104202
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 104202
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 104202
[11] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 104202
[12] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 104202
[13] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 104202
[14] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 104202
[15] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 104202
Viewed
Full text


Abstract