CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials |
Kai-Lun Zhang1, Zhi-Ling Hou1**, Ling-Bao Kong2, Hui-Min Fang1, Ke-Tao Zhan1 |
1School of Science & Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 2School of Science, Beijing Technology and Business University, Beijing 100048
|
|
Cite this article: |
Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong et al 2017 Chin. Phys. Lett. 34 097701 |
|
|
Abstract The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imaginary permittivity can occur for the natural passive materials near the Fabry–Perot resonances. We reveal the nature of negative imaginary permittivity, which is correlated with the magnetoelectric coupling. The anti-resonance of permittivity is a non-inherent feature for passive materials, while it can be inherent for devices or metamaterials. Our finding validates that the negative imaginary part of effective permittivity does not contradict the second law of thermodynamics for metamaterials owing to the magnetoelectric coupling.
|
|
Received: 10 April 2017
Published: 15 August 2017
|
|
PACS: |
77.22.Ch
|
(Permittivity (dielectric function))
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 51102007, and the Fund for Discipline Construction of Beijing University of Chemical Technology under Grant No XK1702. |
|
|
[1] | Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 | [2] | Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366 | [3] | Landy N and Smith D R 2012 Nat. Mater. 12 25 | [4] | Hunt J, Driscoll T, Mrozack A, Lipworth G, Reynolds M, Brady D and Smith D R 2013 Science 339 310 | [5] | Xu T, Wu Y K, Luo X G and Guo L J 2010 Nat. Commun. 1 59 | [6] | Leonhardt U and Philbin T G 2007 New J. Phys. 9 254 | [7] | Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 | [8] | Tuz V R, Prosvirnin S L and Zhukovsky S V 2012 Phys. Rev. A 85 043822 | [9] | Ziolkowski R W and Erentok A 2006 IEEE Trans. Antennas Propag. 54 2113 | [10] | Huang C P and Chan C T 2014 EPJ Appl. Metamater. 1 2 | [11] | Almoneef T S and Ramahi O M 2015 Appl. Phys. Lett. 106 153902 | [12] | Smith D R, Padilla W J, Vier D C, Nemat-Nasser and Schultz S 2000 Phys. Rev. Lett. 84 4184 | [13] | Smith D R, Schultz S, Markos P and Soukoulis M 2002 Phys. Rev. B 65 195104 | [14] | Chen X D, Grzegorczyk T M, Wu B I, Pacheco J and Kong J A 2004 Phys. Rev. E 70 016608 | [15] | Alu A, Yaghjian A D, Shore R A and Silveirinha M G 2011 Phys. Rev. B 84 054305 | [16] | Tuz V R, Novitsky D V, Mladyonov P L, Prosvirnin S L and Novitsky A V 2014 J. Opt. Soc. Am. B 31 2095 | [17] | Nicolson A and Ross G 1970 IEEE Trans. Instrum. Meas. 19 377 | [18] | Weir W B 1974 Proc. IEEE 62 33 | [19] | Depine R A and Lakhtkia A 2004 Phys. Rev. E 70 048601 | [20] | Efros A L 2004 Phys. Rev. E 70 048602 | [21] | Koschny T, Markos P, Smith D R and Soukoulis C M 2003 Phys. Rev. E 68 065602 | [22] | Koschny T, Markos P, Smith D R and Soukoulis C M 2004 Phys. Rev. E 70 048603 | [23] | Markel V A 2008 Phys. Rev. E 78 026608 | [24] | Woodley J and Mojahedi M 2010 J. Opt. Soc. Am. B 27 1016 | [25] | Hrabar S, Krois I, Bonic I and Kiricenko A 2011 Appl. Phys. Lett. 99 254103 | [26] | Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E and Soukoulis C M 2010 Appl. Phys. Lett. 97 081901 | [27] | Rottler A, Harland M, Broell M, Schwaiger S, Stickler D, Stemmann A, Heyn C, Heitmann D and Mendach S 2012 Appl. Phys. Lett. 100 151104 | [28] | Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369 | [29] | Liu X X, Powell D A and Alu A 2011 Phys. Rev. B 84 235106 | [30] | Zhou H F, Hou Z L, Kong L B, Jin H B, Cao M S and Qi X 2013 Phys. Status Solidi A 210 809 | [31] | Hou Z L, Zhang M, Kong L B, Fang H M, Li Z J, Zhou H F, Jin H B and Cao M S 2013 Appl. Phys. Lett. 103 162905 | [32] | Huang C P, Wang S B, Yin X G, Zhang Y, Liu H, Zhu Y Y and Chan C T 2012 Phys. Rev. B 86 085446 | [33] | Huang C P, Yin X G, Zhang Y, Wang S B, Zhu Y Y, Liu H and Chan C T 2012 Phys. Rev. B 85 235410 | [34] | Chen Y J, Gao P, Wang R X, Zhu C L, Wang L J, Cao M S and Jin H B 2009 J. Phys. Chem. C 113 10061 | [35] | Deng L J and Han M G 2007 Appl. Phys. Lett. 91 023119 | [36] | Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108 | [37] | Eftimiu C and Pearson L W 1989 Radio Sci. 24 351 | [38] | Chen X, Grzegorczyk T M and Kong J A 2006 Prog. Electromagn. Res. 60 1 | [39] | Alu A 2011 Phys. Rev. B 83 081102 | [40] | Powell D A and Kivshar Y S 2010 Appl. Phys. Lett. 97 091106 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|