Chin. Phys. Lett.  2017, Vol. 34 Issue (9): 097305    DOI: 10.1088/0256-307X/34/9/097305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy
Chen-Lu Wang1,5, Yan Zhang1,5, Jian-Wei Huang1,5, Guo-Dong Liu1,5**, Ai-Ji Liang1, Yu-Xiao Zhang1, Bing Shen1,5, Jing Liu1,5, Cheng Hu1,5, Ying Ding1,5, De-Fa Liu1, Yong Hu1,5, Shao-Long He1, Lin Zhao1, Li Yu1, Jin Hu2, Jiang Wei2, Zhi-Qiang Mao2, You-Guo Shi1, Xiao-Wen Jia3, Feng-Feng Zhang4, Shen-Jin Zhang4, Feng Yang4, Zhi-Min Wang4, Qin-Jun Peng4, Zu-Yan Xu 4, Chuang-Tian Chen4, Xing-Jiang Zhou1,5,6**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics and Engineering Physics, Tulane University, Louisiana 70118, USA
3General Course Department, Military Transportation University, Tianjin 300161
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
6Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Chen-Lu Wang, Yan Zhang, Jian-Wei Huang et al  2017 Chin. Phys. Lett. 34 097305
Download: PDF(1899KB)   PDF(mobile)(1891KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract WTe$_2$ has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe$_2$. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe$_2$. We identify a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe$_2$. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe$_2$.
Received: 28 May 2017      Published: 15 August 2017
PACS:  73.43.Qt (Magnetoresistance)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11574367, the National Basic Research Program of China under Grant Nos 2013CB921904 and 2015CB921300, the National Key Research and Development Program of China under Grant No 2016YFA0300600, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB07020300, and the US Department of Energy under Grant No DE-SC0014208.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/9/097305       OR      https://cpl.iphy.ac.cn/Y2017/V34/I9/097305
[1]Ali M N et al 2014 Nature 514 205
[2]Soluyanov A A et al 2015 Nature 527 495
[3]Bruno F Y et al 2016 Phys. Rev. B 94 121112(R)
[4]Wang C L et al 2016 Phys. Rev. B 94 241119(R)
[5]Wu Y et al 2016 Phys. Rev. B 94 121113(R)
[6]Sanchez B J et al 2016 Phys. Rev. B 94 161401(R)
[7]Kang D F et al 2015 Nat. Commun. 6 7804
[8]Pan X C et al 2015 Nat. Commun. 6 7805
[9]Jia Z Y et al 2017 Phys. Rev. B 96 041108
[10]Das P K et al 2016 Nat. Commun. 7 10847
[11]Feng B J et al 2016 Phys. Rev. B 94 195134
[12]Wu Y et al 2015 Phys. Rev. Lett. 115 166602
[13]Homes C C et al 2015 Phys. Rev. B 92 161109(R)
[14]Qian X F et al 2014 Science 346 1344
[15]Zheng F P et al 2016 Adv. Mater. 28 4845
[16]Jiang J et al 2015 Phys. Rev. Lett. 115 166601
[17]Lv Y Y et al 2016 Sci. Rep. 6 26903
[18]Rhodes D et al 2015 Phys. Rev. B 92 125152
[19]Luo Y K et al 2015 Appl. Phys. Lett. 107 182411
[20]Flynn S et al 2015 arXiv:1506.07069
[21]Wang Y L et al 2016 Phys. Rev. B 93 121108
[22]Pletikosić I et al 2014 Phys. Rev. Lett. 113 216601
[23]Lv H Y et al 2015 Europhys. Lett. 110 37004
[24]Zhu Z W et al 2015 Phys. Rev. Lett. 114 176601
[25]Xiang F X et al 2015 Europhys. Lett. 112 37009
[26]Cai P L et al 2015 Phys. Rev. Lett. 115 057202
[27]Wu Y et al 2017 Phys. Rev. B 95 195138
Related articles from Frontiers Journals
[1] Wenkai Zhu, Shihong Xie, Hailong Lin, Gaojie Zhang, Hao Wu, Tiangui Hu, Ziao Wang, Xiaomin Zhang, Jiahan Xu, Yujing Wang, Yuanhui Zheng, Faguang Yan, Jing Zhang, Lixia Zhao, Amalia Patanè, Jia Zhang, Haixin Chang, and Kaiyou Wang. Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions[J]. Chin. Phys. Lett., 2022, 39(12): 097305
[2] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 097305
[3] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 097305
[4] Ji-Xiang Gong, Jun Yang, Min Ge, Yong-Jian Wang, Dan-Dan Liang, Lei Luo, Xiu Yan, Wei-Li Zhen, Shi-Rui Weng, Li Pi, Chang-Jin Zhang, Wen-Ka Zhu. Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(9): 097305
[5] Guang-Tong Liu, Yu-Ying Zhu, Qin Wang, Yuan Pang, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Li Lu, Rui-Rui Du, L. N. Pfeiffer, K. W. West. Observation of an Even–Odd Asymmetric Transport in High Landau Levels[J]. Chin. Phys. Lett., 2017, 34(3): 097305
[6] YIN Shu-Li, LIANG Xue-Jin, ZHAO Hong-Wu. Effect of a Highly Metallic Surface State on the Magneto-Transport Properties of Single Crystal Bi Films[J]. Chin. Phys. Lett., 2013, 30(8): 097305
[7] FAN Yin-Bo, ZHANG Cai-Ping, DU Xiao-Bo, WEN Ge-Hui, MA Hong-An, JIA Xiao-Peng. Synthesis and Magnetotransport Properties of CrO2-TiO2 Composites[J]. Chin. Phys. Lett., 2013, 30(3): 097305
[8] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 097305
[9] HAN Kui, TANG Ning**, DUAN Jun-Xi, LU Fang-Chao, LIU Yu-Chi, SHEN Bo**, ZHOU Wen-Zheng, LIN Tie, SUN Lei, YU Guo-Lin, CHU Jun-Hao . Oscillations of Low-Field Magnetoresistivity of Two-Dimensional Electron Gases in Al0.22Ga0.78N/GaN Heterostructures in a Weak Localization Region[J]. Chin. Phys. Lett., 2011, 28(8): 097305
[10] LUO Wei, ZHU Lin-Li, ZHENG Xiao-Jing. Grain Size Effect on Electrical Conductivity and Giant Magnetoresistance of Bulk Magnetic Polycrystals[J]. Chin. Phys. Lett., 2009, 26(11): 097305
[11] CHEN Li-Ping, MA Yu-Bin, SONG Xian-Feng, LIAN Gui-Jun, ZHANG Yan, XIONGGuang-Cheng. Relationship of Polaron Exchange with Ferromagnetic and Insulator--Metal Transitions in Doped Manganites[J]. Chin. Phys. Lett., 2008, 25(9): 097305
[12] CHEN Li-Jun, WANG De-Yong, ZHAN Qing-Feng, HE Wei, LI Qing-An. Magnetoresistance Probe of Ultrathin Mn5Ge3 Films with Anderson Weak Localization[J]. Chin. Phys. Lett., 2008, 25(7): 097305
[13] ZHANG Zong-Zhi, ZHAO Hui, Cardoso S., Freitas P. P.. Effect of Anti-Diffusion Oxide Layer on Enhanced Thermal Stability of Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2006, 23(4): 097305
Viewed
Full text


Abstract