Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 087401    DOI: 10.1088/0256-307X/34/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates
Kun Zhao1, Hai-Cheng Lin1, Wan-Tong Huang1, Xiao-Peng Hu1,2, Xi Chen1,2, Qi-Kun Xue1,2, Shuai-Hua Ji1,2**
1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2Collaborative Innovation Center of Quantum Matter, Beijing 100084
Cite this article:   
Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang et al  2017 Chin. Phys. Lett. 34 087401
Download: PDF(1512KB)   PDF(mobile)(1500KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO$_{3}$(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5 meV are observed in the films of both thicknesses at 4.6 K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.
Received: 11 June 2017      Published: 22 July 2017
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Supported by the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130002120033.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/087401       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Zhao
Hai-Cheng Lin
Wan-Tong Huang
Xiao-Peng Hu
Xi Chen
Qi-Kun Xue
Shuai-Hua Ji
[1]Wang Q Y, Li Z, Zhang W H et al 2012 Chin. Phys. Lett. 29 037402
[2]Ge J F, Liu Z L, Liu C et al 2014 Nat. Mater. 14 285
[3]Hsu F C, Luo J Y, Yeh K W et al 2008 Proc. Natl. Acad. Sci. USA 105 14262
[4]Böhmer A E, Hardy F, Eilers F et al 2013 Phys. Rev. B 87 180505
[5]Song C L, Wang Y L, Cheng P et al 2011 Science 332 1410
[6]Song C L, Wang Y L, Jiang Y P et al 2011 Phys. Rev. B 84 020503(R)
[7]He S, He J, Zhang W et al 2013 Nat. Mater. 12 605
[8]Tan S, Zhang Y, Xia M et al 2013 Nat. Mater. 12 634
[9]Liu D, Zhang W, Mou D et al 2012 Nat. Commun. 3 931
[10]Lee J J, Schmitt F T, Moore R G et al 2014 Nature 515 245
[11]Zhang W H, Sun Y, Zhang J S et al 2014 Chin. Phys. Lett. 31 017401
[12]Xiang Y Y, Wang F, Wang D et al 2012 Phys. Rev. B 86 134508
[13]He J, Liu X, Zhang W et al 2014 Proc. Natl. Acad. Sci. USA 111 18501
[14]Liu K, Lu Z Y and Xiang T 2012 Phys. Rev. B 85 235123
[15]Fan Q, Zhang W H, Liu X et al 2015 Nat. Phys. 11 946
[16]Bang J, Li Z, Sun Y Y et al 2013 Phys. Rev. B 87 220503
[17]Sun Y, Zhang W, Xing Y et al 2015 Sci. Rep. 4 6040
[18]Cao H Y, Tan S, Xiang H et al 2014 Phys. Rev. B 89 014501
[19]Zhang W, Li Z, Li F et al 2014 Phys. Rev. B 89 060506
[20]Zheng F, Wang Z, Kang W et al 2013 Sci. Rep. 3 2213
[21]Wang L, Ma X and Xue Q K 2016 Supercond. Sci. Technol. 29 123001
[22]Zhou G, Zhang D, Liu C et al 2016 Appl. Phys. Lett. 108 202603
[23]Peng R, Xu H C, Tan S Y et al 2014 Nat. Commun. 5 5044
[24]Ding H, Lv Y F, Zhao K et al 2016 Phys. Rev. Lett. 117 067001
[25]Rebec S N, Jia T, Zhang C et al 2017 Phys. Rev. Lett. 118 067002
[26]Subedi A, Zhang L, Singh D J et al 2008 Phys. Rev. B 78 134514
[27]Lai X, Zhang H, Wang Y et al 2015 J. Am. Chem. Soc. 137 10148
[28]Xing J, Lin H, Li Y et al 2016 Phys. Rev. B 93 104520
[29]Borg C K H, Zhou X, Eckberg C et al 2016 Phys. Rev. B 93 094522
[30]Ying T P, Lai X F, Hong X C et al 2016 Phys. Rev. B 94 100504(R)
[31]Lin H, Li Y, Deng Q et al 2016 Phys. Rev. B 93 144505
[32]Yang X, Du Z, Du G et al 2016 Phys. Rev. B 94 024521
[33]Sacépé B, Dubouchet T, Chapelier C et al 2011 Nat. Phys. 7 239
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 087401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 087401
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 087401
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 087401
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 087401
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087401
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 087401
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 087401
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 087401
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 087401
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 087401
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 087401
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 087401
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 087401
Viewed
Full text


Abstract