Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 087301    DOI: 10.1088/0256-307X/34/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings
Ze-Long He1**, Ji-Yuan Bai2,3, Shu-Jiang Ye2, Li Li3, Chun-Xia Li1
1School of Electronic and Information Engineering, Yangtze Normal University, Chongqing 408003
2School of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050
3Key Lab of In-fiber Integrated Optics of Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001
Cite this article:   
Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye et al  2017 Chin. Phys. Lett. 34 087301
Download: PDF(735KB)   PDF(mobile)(727KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the non-equilibrium Keldysh Green's function technique, we investigate electron transport properties of a system consisting of multiple three-quantum-dot rings. The conductance as a function of the electron energy is numerically calculated. An antiresonance point emerges in the conductance spectra and evolves into a well-defined insulating band with the increasing number of three-quantum-dot rings. The position of the well-defined insulating band can be modulated by varying the tunneling coupling strength between adjacent three-quantum-dot rings. When an external magnetic flux is introduced, several to 100% spin-polarized windows will occur due to the Zeeman splitting. These results strongly suggest that this device may realize multiple functions including quantum switch and efficient spin filtering.
Received: 02 May 2017      Published: 22 July 2017
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  05.60.Gg (Quantum transport)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11447132 and 11504042, the Natural Science Foundation of Heilongjiang Province under Grant No A201405, Chongqing Science and Technology Commission Project under Grant Nos cstc2014jcyjA00032 and cstc2016jcyjA1158, and the Scientific Research Project for Advanced Talents of Yangtze Normal University under Grant No 2017KYQD09.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/087301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Long He
Ji-Yuan Bai
Shu-Jiang Ye
Li Li
Chun-Xia Li
[1]Hamedi H R 2016 J. Appl. Phys. 119 183104
[2]He Z L, Lü T Q, Li H and Yin H T 2006 Phys. Lett. A 360 199
[3]An X T and Liu J J 2010 Appl. Phys. Lett. 96 223508
[4]Saffarzadeh A and Farghadan R 2011 Appl. Phys. Lett. 98 023106
[5]Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[6]Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[7]Chi F and Li S S 2006 J. Appl. Phys. 100 113703
[8]Lü H F and Guo Y 2007 Appl. Phys. Lett. 91 092128
[9]Wu H, Han Y, Wang Y and Gong W J 2013 Physica B 419 57
[10]Chen K W and Chang C R 2008 Phys. Rev. B 78 235319
[11]Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[12]Molnar B, Vasilopoulos P and Peeters F M 2005 Phys. Rev. B 72 075330
[13]Gong W, Zheng Y, Liu Y and Lü T 2006 Phys. Rev. B 73 245329
[14]Yi G, Wei G, Wang S and Du A 2008 Phys. Lett. A 372 4092
[15]Fu H H and Yao K L 2012 Appl. Phys. Lett. 100 013502
[16]Fu H H and Yao K L 2012 J. Appl. Phys. 111 094512
[17]Fu H H and Yao K L 2012 J. Appl. Phys. 111 124510
[18]Xu W P, Zhang Yu Ying, Wang Q and Nie Y H 2016 Chin. Phys. B 25 117307
[19]He Z L and Lü T Q 2012 Phys. Lett. A 376 2501
[20]He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303
[21]He Z L, Lü T Q and Zhang D 2013 Chin. Phys. B 22 027306
[22]Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
[23]Hsieh C Y, Shim Y P, Korkusinski M and Hawrylak P 2012 Rep. Prog. Phys. 75 114501
[24]Ladrón de Guevara M L and Orellana P A 2006 Phys. Rev. B 73 205303
[25]Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 087301
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 087301
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 087301
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 087301
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 087301
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 087301
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 087301
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 087301
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 087301
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 087301
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 087301
[13] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 087301
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 087301
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 087301
Viewed
Full text


Abstract