CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation |
Yi-Ze Wang1,5, Chang Liu1,2, Jian-Hui Cai1,3, Qiang Liu1,3, Xin-Ke Liu4, Wen-Jie Yu1**, Qing-Tai Zhao2 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2Peter Grünberg Institute 9, JARA-FIT, Forschungszentrum Jülich, Jülich 52425, Germany 3College of Sciences, Shanghai University, Shanghai 200444 4College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 5University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Yi-Ze Wang, Chang Liu, Jian-Hui Cai et al 2017 Chin. Phys. Lett. 34 078501 |
|
|
Abstract We present an experimental analysis of Schottky-barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) fabricated on ultrathin body silicon-on-insulator substrates with a steep junction by the dopant implantation into the silicide process. The subthreshold swing of such SB-MOSFETs reaches 69 mV/dec. Emphasis is placed on the capacitance-voltage analysis of p-type SB-MOSFETs. According to the measurements of gate-to-source capacitance $C_{\rm gs}$ with respect to $V_{\rm gs}$ at various $V_{\rm ds}$, we find that a maximum occurs at the accumulation regime due to the most imbalanced charge distribution along the channel. At each $C_{\rm gs}$ peak, the difference between $V_{\rm gs}$ and $V_{\rm ds}$ is equal to the Schottky barrier height (SBH) for NiSi$_{2}$ on highly doped silicon, which indicates that the critical condition of channel pinching off is related with SBH for source/drain on channel. The SBH for NiSi$_{2}$ on highly doped silicon can affect the pinch-off voltage and the saturation current of SB-MOSFETs.
|
|
Received: 08 March 2017
Published: 23 June 2017
|
|
PACS: |
85.30.-z
|
(Semiconductor devices)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
61.72.uf
|
(Ge and Si)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61674161, and the Open Project of State Key Laboratory of Functional Materials for Informatics. |
|
|
[1] | Larson J M and Snyder J P 2006 IEEE Trans. Electron Devices 53 1048 | [2] | Zhu S Y and Li M F 2005 Chin. Phys. Lett. 22 2020 | [3] | An X et al 2009 Chin. Phys. B 18 4465 | [4] | Li D Y et al 2007 Chin. Phys. B 16 240 | [5] | Isogai T et al 2007 Jpn. J. Appl. Phys. 47 3138 | [6] | Peng Q et al 2015 Acta Phys. Sin. 64 7 (in Chinese) | [7] | Liu B B and Cai Q 2013 Chin. Phys. Lett. 30 096801 | [8] | Zhu S Y et al 2004 IEEE Electron Device Lett. 25 565 | [9] | Zhang Z, Qiu Z J, Hellstrom P E, Malm G, Olsson J, Lu J, Ostling M and Zhang S L 2008 IEEE Electron Device Lett. 29 125 | [10] | Woo Y M, Hwang W S and Yoo W J 2015 J. Vac. Sci. Technol. A 33 021307 | [11] | Bashir F, Loan S A, Rafat M, Alamoud A R M and Abbasi S A 2015 IEEE Trans. Electron Devices 62 3357 | [12] | Urban C, Emam M, Sandow C, Knoch J, Zhao Q T, Raskin J P and Mantl S 2010 IEEE Electron Device Lett. 31 537 | [13] | Knoch J, Zhang M, Zhao Q T, Lenk S, Mantl S and Appenzeller J 2005 Appl. Phys. Lett. 87 263505 | [14] | Zhao Q T, Breuer U, Rije E, Lenk S and Mant S 2005 Appl. Phys. Lett. 86 062108 | [15] | Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J and Kato K 2007 IEEE International Electron Devices Meeting (Washington, DC, America 10–12 December 2007) p 963 | [16] | Huang W, Zhang L C, Gao Y Z and Jin H Y 2005 Acta Phys. Sin. 54 2252 (in Chinese) | [17] | Chang J G, Wu C B, Ji X L, Ma H W, Yan F, Shi Y and Zhang R 2012 Chin. Phys. Lett. 29 058501 | [18] | Shan X N, Huang R, Li Y and Cai Y M 2007 Acta Phys. Sin. 56 4943 (in Chinese) | [19] | Knoll L, Zhao Q T, Habicht S, Urban C, Ghyselen B and Mantl S 2010 IEEE Electron Device Lett. 31 350 | [20] | Knoll L, Zhao Q T, Habicht S, Urban C, Bourdelle K K and Mantl S 2010 Int. Workshop Junction Technol. (Shanghai, China 10–11 May 2010) p 1 | [21] | Knoll L, Zhao Q T, Luptak R, Trellenkamp S, Bourdelle K K and Mantl S 2012 Solid-State Electron. 71 88 | [22] | Fujitani H and Asano S 1994 Phys. Rev. B 50 8681 | [23] | Wang T, Dai Y B, Ouyang S K, Wu J S and Shen H S 2004 Chin. Phys. Lett. 21 2163 | [24] | Luo J, Gao X D, Qiu Z J, Lu J, Wu D P, Zhao C, Li J F, Chen D P, Hultman L and Zhang S L 2011 IEEE Electron Device Lett. 32 1029 | [25] | Mi S B, Jia C L, Zhao Q T, Mantl S and Urban K 2009 Acta Mater. 57 232 | [26] | Knoch J, Zhang M, Appenzeller J and Mantl S 2007 Appl. Phys. A 87 351 | [27] | An X, Fan C H, Huang R and Zhang X 2009 Chin. Phys. Lett. 26 087304 | [28] | Knoch J, Zhang M, Feste S and Mantl S 2007 Microelectron. Eng. 84 2563 | [29] | Zhao Q T, Zhang M, Knoch J and Mantl S 2006 Int. Workshop Junction Technol. (Shanghai, China 15–16 May 2006) p 147 | [30] | Shima A, Sugii N, Mise N, Hisamoto D, Takeda K I and Torii K 2011 Jpn. J. Apll. Phys. 50 04DC06 | [31] | Geng L, Magyari-Kope B and Nishi Y 2009 IEEE Electron Device Lett. 30 963 | [32] | Zhao Q T, Knoll L, Sch(äfer A, Trellenkamp S, Bourdelle K K and Mantl S 2012 Int. Workshop Junction Technol. (Shanghai, China 14–15 May 2012) p 186 | [33] | Padilla J L, Knoll L, Gamiz F, Zhao Q T, Godoy A and Mantl S 2012 IEEE Trans. Electron Devices 59 1320 | [34] | Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken: John Wiley & Sons Inc.) chap 3 p 136 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|