Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 078502    DOI: 10.1088/0256-307X/34/7/078502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond
Guang-Xing Wan1,2, Gui-Lei Wang1,2**, Hui-Long Zhu1,2**
1Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu 2017 Chin. Phys. Lett. 34 078502
Download: PDF(1253KB)   PDF(mobile)(1254KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A promising technology named epitaxy on nano-scale freestanding fin (ENFF) is firstly proposed for hetero-epitaxy. This technology can effectively release total strain energy and then can reduce the probability of generating mismatch dislocations. Based on the calculation, dislocation defects can be eliminated completely when the thickness of the Si freestanding fin is less than 10 nm for the epitaxial Ge layer. In addition, this proposed ENFF process can provide sufficient uniaxial stress for the epitaxy layer, which can be the major stressor for the SiGe or Ge channel fin field-effect transistor or nanowire at the 10 nm node and beyond. According to the results of technology computer-aided design simulation, nanowires integrated with ENFF show excellent electrical performance for uniaxial stress and band offset. The ENFF process is compatible with the state of the art mainstream technology, which has a good potential for future applications.
Received: 09 April 2017      Published: 23 June 2017
PACS:  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Supported by the National Key Research and Development Program of China (2016YFA0301701), and the Youth Innovation Promotion Association of CAS under Grant No 2016112 .
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/078502       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/078502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guang-Xing Wan
Gui-Lei Wang
Hui-Long Zhu
[1]Yeric G 2015 IEEE Int. Electron. Devices Meeting (Washington DC 7–9 December 2015) p 1.1.1
[2]Guo D, Karve G, Tsutsui G, Lim K Y, Robison R, Hook T, Vega R, Liu D, Bedell S, Mochizuki S, Lie F, Akarvardar K, Wang M, Bao R, Burns S, Chan V, Cheng K, Demarest J, Fronheiser J, Hashemi P, Kelly J, Li J, Loubet N, Montanini P, Sahu B, Sankarapandian M, Sieg S, Sporre J, Strane J, Southwick R, Tripathi N, Venigalla R, Wang J, Watanabe K, Yeung C W, Gupta D, Doris B, Felix N, Jacob A, Jagannathan H, Kanakasabapathy S, Mo R, Narayanan V, Sadana D, Oldiges P, Stathis J, Yamashita T, Paruchuri V, Colburn M, Knorr A, Divakaruni R, Bu H and Khare M 2016 IEEE Symp. VLSI Technol. (Honolulu Hawaii 14–16 June 2016) p 1
[3]Waldron N, Merckling C, Guo W, Ong P, Teugels L, Ansar S, Tsvetanova D, Sebaai F, Dorp D H v, Milenin A, Lin D, Nyns L, Mitard J, Pourghaderi A, Douhard B, Richard O, Bender H, Boccardi G, Caymax M, Heyns M, Vandervorst W, Barla K, Collaert N and Thean A V Y 2014 Symp. VLSI Technol. (Honolulu Hawaii 9–12 June 2014) p 1
[4]An X, Huang R, Li Z, Yun Q, Lin M, Guo Y, Liu P, Li M and Zhang X 2015 Acta Phys. Sin. 64 49 (in Chinese)
[5]Matthews J W and Blakeslee A E 1976 J. Cryst. Growth 32 265
[6]Vincent B, Damlencourt J F, Morand Y, Pouydebasque A, Le Royer C, Clavelier L, Dechoux N, Rivallin P, Nguyen T, Cristoloveanu S, Campidelli Y, Rouchon D, Mermoux M, Deleonibus S, Bensahel D and Billon T 2008 Mater. Sci. Semicond. Process. 11 205
[7]Vincent B, Damlencourt J F, Delaye V, Gassilloud R, Clavelier L and Morand Y 2007 Appl. Phys. Lett. 90 074101
[8]Shinichi T, Rui Z, Junkyo S, Sang-Hyeon K, Masafumi Y, Koichi N and Mitsuru T 2015 Jpn. J. Appl. Phys. 54 06FA01
[9]Luryi S and Suhir E 1986 Appl. Phys. Lett. 49 140
[10]Huang F Y 2000 Phys. Rev. Lett. 85 784
[11]Gupta S, Moroz V, Smith L, Lu Q and Saraswat K C 2014 IEEE Trans. Electron Devices 61 1222
[12]Xu N, Ho B, Choi M, Moroz V and Liu T J K 2012 IEEE Trans. Electron Devices 59 1592
[13]Eneman G, Brunco D P, Witters L, Vincent B, Favia P, Hikavyy A, Keersgieter A D, Mitard J, Loo R, Veloso A, Richard O, Bender H, Lee S H, Dal M V, Kabir N, Vandervorst W, Caymax M, Horiguchi N, Collaert N and Thean A 2012 Int. Electron. Devices Meeting (Washington DC 10–13 December 2012) p 6.5.1
[14]Eneman G, Brunco D P, Witters L, Mitard J, Hikavyy A, Keersgieter A D, Roussel P J, Loo R, Veloso A, Horiguchi N, Collaert N and Thean A 2014 7th Int. Silicon-Germanium Technol. Device Meeting (Singapore 2–4 June 2014) p 9
[15]Wang G, Abedin A, Moeen M, Kolahdouz M, Luo J, Guo Y, Chen T, Yin H, Zhu H, Li J, Zhao C and Radamson H H 2015 Solid-State Electron. 103 222
[16]Bijesh R, Ok I, Baykan M, Hobbs C, Majhi P, Jammy R and Datta S 2011 69th Device Res. Conf. (Santa Barbara California 20–22 June 2011) p 237
[17]Wang G L, Moeen M, Abedin A, Kolahdouz M, Luo J, Qin C L, Zhu H L, Yan J, Yin H Z, Li J F, Zhao C and Radamson H H 2013 J. Appl. Phys. 114 123511
Related articles from Frontiers Journals
[1] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 078502
[2] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 078502
[3] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 078502
[4] YU Guang, WU Chen-Fei, LU Hai, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou, HUANG Xiao-Ming. Frequency Performance of Ring Oscillators Based on a-IGZO Thin-Film Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 078502
[5] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 078502
[6] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 078502
[7] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 078502
[8] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 078502
[9] FENG Chong, TANG Zhen-An, YU Jun. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation[J]. Chin. Phys. Lett., 2012, 29(3): 078502
[10] WEI Rong-Shan, CHEN Jin-Feng, CHEN Shou-Chang, HE Ming-Hua. Reconfigurable Threshold Logic Element with SET and MOS Transistors[J]. Chin. Phys. Lett., 2012, 29(2): 078502
[11] WANG Wei, HUANG Bei-Ju, DONG Zan, LIU Hai-Jun, ZHANG Xu, GUAN Ning, CHEN Jin, GUO Wei-Lian, NIU Ping-Juan, CHEN Hong-Da. A Low-Voltage Silicon Light Emitting Device in Standard Salicide CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(4): 078502
[12] ZHONG Min, SONG Zhi-Tang, LIU Bo, FENG Song-Lin, CHEN Bomy. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device[J]. Chin. Phys. Lett., 2008, 25(2): 078502
[13] LIU Qi-Bin, SONG Zhi-Tang, ZHANG Kai-Liang, WANG Liang-Yong, FENG Song-Lin, CHEN Bomy. Damascene Array Structure of Phase Change Memory Fabricated with Chemical Mechanical Polishing Method[J]. Chin. Phys. Lett., 2006, 23(8): 078502
[14] LEE Chee-Wei, CHIN Mee-Koy. Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl2N2 and Cl2/CH4/H2[J]. Chin. Phys. Lett., 2006, 23(4): 078502
[15] SUN Chang-Zheng, ZHOU Jin-Bo, XIONG Bing, WANG Jian, LUO Yi. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature[J]. Chin. Phys. Lett., 2003, 20(8): 078502
Viewed
Full text


Abstract