Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 054701    DOI: 10.1088/0256-307X/34/5/054701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effect of Cellular Instability on the Initiation of Cylindrical Detonations
Wen-Hu Han1, Jin Huang2**, Ning Du1, Zai-Gang Liu1, Wen-Jun Kong1, Cheng Wang3
1Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190
2Beijing Priority Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124
3Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
Cite this article:   
Wen-Hu Han, Jin Huang, Ning Du et al  2017 Chin. Phys. Lett. 34 054701
Download: PDF(1212KB)   PDF(mobile)(1205KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The direct initiation of detonations in one-dimensional (1D) and two-dimensional (2D) cylindrical geometries is investigated through numerical simulations. In comparison of 1D and 2D simulations, it is found that cellular instability has a negative effect on the 2D initiation and makes it more difficult to initiate a sustaining 2D cylindrical detonation. This effect associates closely with the activation energy. For the lower activation energy, the 2D initiation of cylindrical detonations can be achieved through a subcritical initiation way. With increasing the activation energy, the 2D cylindrical detonation has increased difficulty in its initiation due to the presence of unreacted pockets behind the detonation front and usually requires rather larger source energy.
Received: 18 November 2016      Published: 29 April 2017
PACS:  47.40.Rs (Detonation waves)  
  47.85.Gj (Aerodynamics)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91541206 and 91441131.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/054701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/054701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hu Han
Jin Huang
Ning Du
Zai-Gang Liu
Wen-Jun Kong
Cheng Wang
[1]Lee H I and Stewart D S 1990 J. Fluid Mech. 216 103
[2]Bourlioux A and Majda A J 1992 Combus. Flame 90 211
[3]Short M and Stewart D S 1998 J. Fluid Mech. 368 229
[4]Short M 2001 J. Fluid Mech. 430 381
[5]Ng H D and Lee J H S 2003 J. Fluid Mech. 476 179
[6]Eckett C A et al 2000 J. Fluid Mech. 421 147
[7]Watt S D and Sharpe G J 2004 Proc. R. Soc. London Ser. A 460 2551
[8]Sharpe G J and Falle S A E G 2000 Combust. Theor. Model. 4 557
[9]Deledicque V and Papalexandris M V 2006 Combust. Flame 144 821
[10]Shen H et al 2011 Chin. Phys. Lett. 28 124705
[11]Huang Y et al 2012 Chin. Phys. Lett. 29 114701
[12]Liu S J et al 2011 Chin. Phys. Lett. 28 094704
[13]Watt S D and Sharpe G J 2005 J. Fluid Mech. 522 329
[14]Wang C et al 2008 Appl. Math. Mech. 29 1487
[15]Dong G and Fan B C 2011 Chin. J. High Press. Phys. 25 193
[16]Han G L, Jiang Z L, Wang C and Zhang F 2008 Chin. Phys. Lett. 25 2125
[17]Wang G et al 2010 Chin. Phys. Lett. 27 024701
[18]Redulescu M I and Lee J H S 2002 Combust. Flame 131 29
[19]Jiang Z L et al 2009 Combust. Flame. 156 1653
[20]Mahmoudi Y and Mazaheri K 2015 Acta Astronaut. 115 40
[21]Jackson S I and Short M 2013 Combust. Flame 160 2260
[22]Lee J H et al 1972 Combust. Flame. 18 321
[23]Jiang Z L et al 2008 Chin. Phys. Lett. 25 3704
[24]Han W et al 2015 Phys. Fluids 27 106101
[25]Yao J and Stewart D S 1996 J. Fluid Mech. 309 225
[26]He L 1996 Combust. Flame 104 401
[27]Chung K L 2006 Combustion Physics (Cambridge: Cambridge University Press)
[28]Jiang G S and Shu C W 1996 J. Comput. Phys. 126 202
[29]Shu C W and Osher S 1988 J. Comput. Phys. 77 439
[30]Balsara D S and Shu C W 2000 J. Comput. Phys. 160 405
[31]Wang C et al 2013 Combust. Flame 160 447
[32]Zhang X and Shu C W 2012 J. Comput. Phys. 231 2245
[33]He L and Clavin P 1994 J. Fluid Mech. 277 227
[34]Sharpe G J and Falle S A E G 2000 J. Fluid Mech. 414 339
[35]Radulescu M I et al 2007 21th The International Colloquium on the Dynamics of Explosions and Reactive Systems (Poitiers France 23–27 July 2007)
[36]Ng H D et al 2015 25th The International Colloquium on the Dynamics of Explosions and Reactive Systems (Leeds UK 2–7 August 2015)
[37]Ng H D et al 2001 18th The International Colloquium on the Dynamics of Explosions and Reactive Systems (Washington DC 29–31 July 2001)
Related articles from Frontiers Journals
[1] Wen-Tao Zan, He-Fei Dong, Tao Hong. Simulation of Double-Front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air[J]. Chin. Phys. Lett., 2017, 34(7): 054701
[2] YANG Xian-Jun, WANG Shuai-Chuang, DENG Ai-Dong, GU Zhuo-Wei, LUO Hao. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(10): 054701
[3] HAN Xu, ZHOU Jin, LIN Zhi-Yong, LIU Yu . Deflagration-to-Detonation Transition Induced by Hot Jets in a Supersonic Premixed Airstream[J]. Chin. Phys. Lett., 2013, 30(5): 054701
[4] HUANG Yue, JI Hua, LIEN Fue-Sang, TANG Hao. Three-Dimensional Parallel Simulation of Formation of Spinning Detonation in a Narrow Square Tube[J]. Chin. Phys. Lett., 2012, 29(11): 054701
[5] YANG Duo-Xing, and ZHANG De-Liang. Applications of the CE/SE Scheme to Incompressible Viscous Flows in Two-Sided Lid-Driven Square Cavities[J]. Chin. Phys. Lett., 2012, 29(8): 054701
[6] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 054701
[7] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 054701
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 054701
[9] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 054701
[10] SHAO Ye-Tao, WANG Jian-Ping. Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation[J]. Chin. Phys. Lett., 2010, 27(3): 054701
[11] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 054701
[12] WANG Chun, JIANG Zong-Lin, GAO Yun-Liang. Half-Cell Law of Regular Cellular Detonations[J]. Chin. Phys. Lett., 2008, 25(10): 054701
[13] HAN Gui-Lai, JIANG Zong-Lin, WANG Chun, ZHANG Fan. Cellular Cell Bifurcation of Cylindrical Detonations[J]. Chin. Phys. Lett., 2008, 25(6): 054701
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 054701
Viewed
Full text


Abstract