Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 054702    DOI: 10.1088/0256-307X/34/5/054702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wavenumber Selection by Bénard–Marangoni Convection at High Supercritical Number
Di Wu1, Li Duan1,2**, Qi Kang1,2**
1Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Di Wu, Li Duan, Qi Kang 2017 Chin. Phys. Lett. 34 054702
Download: PDF(1035KB)   PDF(mobile)(1034KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Marangoni–Bénard convection, which is mainly driven by the thermocapillary (Marangoni) effect, occurs in a thin liquid layer heated uniformly from the bottom. The wavenumber of supercritical convection is studied experimentally in a $160\times160$-mm$^{2}$ cavity that is heated from the bottom block. The convection pattern is visualized by an infrared thermography camera. It is shown that the onset of the Bénard cell is consistent with theoretical analysis. The wavenumber decreases obviously with increasing temperature, except for a slight increase near the onset. The wavenumber gradually approaches the minimum when the supercritical number $\varepsilon$ is larger than 10. Finally, a formula is devised to describe the wavenumber selection in supercritical convection.
Received: 13 November 2016      Published: 29 April 2017
PACS:  47.20.Dr (Surface-tension-driven instability)  
  47.54.-r (Pattern selection; pattern formation)  
  47.54.De (Experimental aspects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11502271 and 11372328, the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences under Grant Nos XDA04020405 and XDA04020202-05, and the China Manned Space Engineering Program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/054702       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/054702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di Wu
Li Duan
Qi Kang
[1]Bernard H 1900 Rev. Gén Sci. Pure Appl. 11 1261
[2]Widawski G, Rawiso M and François B 1994 Nature 369 387
[3]Maillard M, Motte L and Pileni M 2001 Adv. Mater. 13 200
[4]Cloot A and Lebon G 1984 J. Fluid Mech. 145 447
[5]Bestehorn M 1993 Phys. Rev. E 48 3622
[6]Koschmieder E L and Switzer D W 1992 J. Fluid Mech. 240 533
[7]Shevtsova V, Mialdun A, Kawamura H, Ueno I, Nishino K and Lappa M 2011 Fluid Dyn. Mater. Process. 7 1
[8]Pearson J R A 1958 J. Fluid Mech. 4 489
[9]Rayleigh L 1916 Philos. Mag. 32 529
[10]Silicone Fluid Kf-96 Performance Test Results 2008 (Shin-Etsu Chemlcal Co., Ltd. Japan)
[11]Nield D A 1964 J. Fluid Mech. 19 341
[12]Cerisier P, Perezgarcia C, Jamond C and Pantaloni J 1987 Phys. Rev. A 35 1949
[13]Nitschke K and Thess A 1995 Phys. Rev. E 52 R5772
[14]Moriarty P, Taylor M D R and Brust M 2002 Phys. Rev. Lett. 89 248303
Related articles from Frontiers Journals
[1] Yan Cen, Chuanshan Tian. Surface Tension and Electrostriction in a Suspended Bridge of Dielectric Liquid[J]. Chin. Phys. Lett., 2018, 35(10): 054702
[2] Jia Wang, Li Duan, Qi Kang. Oscillatory and Chaotic Buoyant-Thermocapillary Convection in the Large-Scale Liquid Bridge[J]. Chin. Phys. Lett., 2017, 34(7): 054702
[3] WANG Xin-Wei, SONG Yong-Xin, WANG Hao. Observation of Nucleate Boiling on a Fine Copper Wire with Superhydrophobic Micropatterns[J]. Chin. Phys. Lett., 2012, 29(11): 054702
[4] PAN Zhen-Hai, WANG Hao, YANG Zhen. Marangoni Bifurcation Flow in a Microchannel T-Junction and Its Micropumping Effect: A Computational Study[J]. Chin. Phys. Lett., 2012, 29(7): 054702
[5] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 054702
[6] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 054702
[7] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 054702
[8] LI Lu-Jun, DUAN Li, HU Liang, KANG Qi. Experimental Investigation of Influence of Interfacial Tension on Convection of Two-Layer Immiscible Liquid[J]. Chin. Phys. Lett., 2008, 25(5): 054702
[9] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 054702
[10] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 054702
[11] WU Di, WANG Yi-Zhen, ZHANG Jin-Xiu. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air--Water Interface[J]. Chin. Phys. Lett., 2007, 24(10): 054702
[12] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 054702
[13] LIU Mei, ZHANG Jian-Gang, LV Yao, XIA Shan-Hong. Self-Assembly of Micro-Parts onto Si Substrates at Liquid--Liquid Interface[J]. Chin. Phys. Lett., 2006, 23(1): 054702
[14] WANG Hao, PENG Xiao-Feng, David M. Christopher. Dynamic Bubble Behaviour during Microscale Subcooled Boiling[J]. Chin. Phys. Lett., 2005, 22(11): 054702
[15] ZHOU Gui-Yao, HOU Zhi-Yun, LI Shu-Guang, HOU Lan-Tian. Mathematical Model for Fabrication of Micro-Structure Fibres[J]. Chin. Phys. Lett., 2005, 22(5): 054702
Viewed
Full text


Abstract