Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 048101    DOI: 10.1088/0256-307X/34/4/048101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer
Bo-Ting Liu1, Shi-Kuan Guo1, Ping Ma1,2,3,4**, Jun-Xi Wang1,2,3,4, Jin-Min Li1,2,3,4**
1Semiconductor Lighting R&D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
3State Key Laboratory of Solid State Lighting, Beijing 100083
4Beijing Engineering Research Center for the Third-Generation Semiconductor Materials and Application, Beijing 100083
Cite this article:   
Bo-Ting Liu, Shi-Kuan Guo, Ping Ma et al  2017 Chin. Phys. Lett. 34 048101
Download: PDF(2058KB)   PDF(mobile)(2052KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer. Improved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H–SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.
Received: 20 December 2016      Published: 21 March 2017
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  83.85.St (Stress relaxation ?)  
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFB0400200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/048101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/048101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo-Ting Liu
Shi-Kuan Guo
Ping Ma
Jun-Xi Wang
Jin-Min Li
[1]Moon Y T, Xie J, Liu C et al 2006 J. Cryst. Growth 291 301
[2]Dadgar A, Poschenrieder M, Bläsing J et al 2003 J. Cryst. Growth 248 556
[3]Warren Weeks Jr T, Bremser Michael D, Shawn Ailey K et al 1995 Appl. Phys. Lett. 67 401
[4]Engl K, Beer M, Gmeinwieser N et al 2006 J. Cryst. Growth 289 6
[5]Lee K J, Shin E H and Lim K Y 2004 Appl. Phys. Lett. 85 1502
[6]Feltin E, Beaumont B, Laugt M et al 2001 Appl. Phys. Lett. 79 3230
[7]Kim M H, Bang Y C, Park N M et al 2001 Appl. Phys. Lett. 78 2858
[8]Dadgar A, Poschenrieder M, Reiher A et al 2003 Appl. Phys. Lett. 82 28
[9]Sasaki T and Matsuoka T 1988 J. Appl. Phys. 64 4531
[10]Lin M E, Sverdlov B, Zhou G L et al 1993 Appl. Phys. Lett. 62 3479
[11]Ponce F A, Krusor B S, Major J S et al 1995 Appl. Phys. Lett. 67 410
[12]Wosko M, Paszkiewicz B, Szymanski T et al 2016 Superlattices Microstruct. 100 619
[13]Huang Z, Zhang Y T, Deng G Q et al 2016 J. Mater. Sci.: Mater. Electron. 27 10003
[14]Cho E, Mogilatenko A, Brunner F et al 2013 J. Cryst. Growth 371 45
[15]Heying B, Wu X H, Keller S et al 1996 Appl. Phys. Lett. 68 643
[16]Romanov A E and Speck J S 2003 Appl. Phys. Lett. 83 2569
[17]Ahmad I, Holtz M, Faleev N N et al 2004 J. Appl. Phys. 95 1692
[18]Davydov V Y, Averkiev N S, Goncharuk I N et al 1997 J. Appl. Phys. 82 5097
[19]Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
[20]Perlin P, Jauberthie-Carillion C, Itie J P et al 1992 Phys. Rev. B 45 83
[21]Shi J Y, Yu L P, Wang Y Z et al 2002 Appl. Phys. Lett. 80 2293
[22]Zhao D G, Xu S J, Xie M H et al 2003 Appl. Phys. Lett. 83 677
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 048101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 048101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 048101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 048101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 048101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 048101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 048101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 048101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 048101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 048101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 048101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 048101
[14] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 048101
[15] Yang Ren, Rui-Ting Hao, Si-Jia Liu, Jie Guo, Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu. High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 048101
Viewed
Full text


Abstract