CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer |
Bo-Ting Liu1, Shi-Kuan Guo1, Ping Ma1,2,3,4**, Jun-Xi Wang1,2,3,4, Jin-Min Li1,2,3,4** |
1Semiconductor Lighting R&D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 3State Key Laboratory of Solid State Lighting, Beijing 100083 4Beijing Engineering Research Center for the Third-Generation Semiconductor Materials and Application, Beijing 100083
|
|
Cite this article: |
Bo-Ting Liu, Shi-Kuan Guo, Ping Ma et al 2017 Chin. Phys. Lett. 34 048101 |
|
|
Abstract We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AlN buffer layer. Improved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6H–SiC substrates by metal organic chemical vapor deposition. Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer, we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.
|
|
Received: 20 December 2016
Published: 21 March 2017
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
83.85.St
|
(Stress relaxation ?)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2016YFB0400200. |
|
|
[1] | Moon Y T, Xie J, Liu C et al 2006 J. Cryst. Growth 291 301 | [2] | Dadgar A, Poschenrieder M, Bläsing J et al 2003 J. Cryst. Growth 248 556 | [3] | Warren Weeks Jr T, Bremser Michael D, Shawn Ailey K et al 1995 Appl. Phys. Lett. 67 401 | [4] | Engl K, Beer M, Gmeinwieser N et al 2006 J. Cryst. Growth 289 6 | [5] | Lee K J, Shin E H and Lim K Y 2004 Appl. Phys. Lett. 85 1502 | [6] | Feltin E, Beaumont B, Laugt M et al 2001 Appl. Phys. Lett. 79 3230 | [7] | Kim M H, Bang Y C, Park N M et al 2001 Appl. Phys. Lett. 78 2858 | [8] | Dadgar A, Poschenrieder M, Reiher A et al 2003 Appl. Phys. Lett. 82 28 | [9] | Sasaki T and Matsuoka T 1988 J. Appl. Phys. 64 4531 | [10] | Lin M E, Sverdlov B, Zhou G L et al 1993 Appl. Phys. Lett. 62 3479 | [11] | Ponce F A, Krusor B S, Major J S et al 1995 Appl. Phys. Lett. 67 410 | [12] | Wosko M, Paszkiewicz B, Szymanski T et al 2016 Superlattices Microstruct. 100 619 | [13] | Huang Z, Zhang Y T, Deng G Q et al 2016 J. Mater. Sci.: Mater. Electron. 27 10003 | [14] | Cho E, Mogilatenko A, Brunner F et al 2013 J. Cryst. Growth 371 45 | [15] | Heying B, Wu X H, Keller S et al 1996 Appl. Phys. Lett. 68 643 | [16] | Romanov A E and Speck J S 2003 Appl. Phys. Lett. 83 2569 | [17] | Ahmad I, Holtz M, Faleev N N et al 2004 J. Appl. Phys. 95 1692 | [18] | Davydov V Y, Averkiev N S, Goncharuk I N et al 1997 J. Appl. Phys. 82 5097 | [19] | Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346 | [20] | Perlin P, Jauberthie-Carillion C, Itie J P et al 1992 Phys. Rev. B 45 83 | [21] | Shi J Y, Yu L P, Wang Y Z et al 2002 Appl. Phys. Lett. 80 2293 | [22] | Zhao D G, Xu S J, Xie M H et al 2003 Appl. Phys. Lett. 83 677 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|