CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors |
Shi-Li Yan1, Zhi-Jian Xie1, Jian-Hao Chen1,3**, Takashi Taniguchi2, Kenji Watanabe2 |
1International Center for Quantum Materials, Peking University, Beijing 100871
2High Pressure Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
|
|
Cite this article: |
Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen et al 2017 Chin. Phys. Lett. 34 047304 |
|
|
Abstract The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.
|
|
Received: 10 March 2017
Published: 21 March 2017
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900, the National Natural Science Foundation of China under Grant No 11374021) (S. Yan, Z. Xie, J.-H. Chen). K.W. and T.T. acknowledge the support from the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas "Science of Atomic Layers" from JSPS. |
|
|
[1] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | [2] | Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 | [3] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D and Ye P D 2014 ACS Nano 8 4033 | [4] | Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 | [5] | Tran V, Soklaski R, Liang Y F and Yang L 2014 Phys. Rev. B 89 235319 | [6] | Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Oezyilmaz B 2014 Appl. Phys. Lett. 104 10 | [7] | Fei R X and Yang L 2014 Nano Lett. 14 2884 | [8] | Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347 | [9] | Buscema M, Groenendijk D J, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nat. Commun. 5 4651 | [10] | Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183 | [11] | Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414 | [12] | Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823 | [13] | Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H and Mei L 2017 Adv. Mater. 29 1603276 | [14] | Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H and Chu P K 2016 Nat. Commun. 7 12967 | [15] | Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, Liu Z, Han Y, Wang L, Li J, Deng L, Liu Y N and Guo S 2017 Adv. Mater. 29 1603864 | [16] | Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H and Chu P K 2015 Angew. Chem. Int. Ed. 54 11526 | [17] | Wang H, Yang X Z, Shao W, Chen S C, Xie J F, Zhang X D, Wang J and Xie Y 2015 J. Am. Chem. Soc. 137 11376 | [18] | Park C M and Sohn H J 2007 Adv. Mater. 19 2465 | [19] | Sun L Q, Li M J, Sun K, Yu S H, Wang R S and Xie H M 2012 J. Phys. Chem. Lett. 116 14772 | [20] | Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Koepf M, Nilges T and Zhou C 2015 ACS Nano 9 5618 | [21] | Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2016 Nano Lett. 16 2122 | [22] | Morita A 1986 Appl. Phys. A 39 227 | [23] | Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4873 | [24] | Kim K S, Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723 | [25] | Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801 | [26] | Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y and Chen X H 2015 Phys. Rev. Lett. 115 186403 | [27] | Chu T, Ilatikhameneh H, Klimeck G, Rahman R and Chen Z 2015 Nano Lett. 15 8000 | [28] | Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820 | [29] | Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715 | [30] | Yan J and Fuhrer M S 2010 Nano Lett. 10 4521 | [31] | Li J, Martin I, Buettiker M and Morpurgo A F 2011 Nat. Phys. 7 38 | [32] | Taychatanapat T and Jarillo-Herrero P 2010 Phys. Rev. Lett. 105 166601 | [33] | Khoo K H, Mazzoni M S C and Louie S G 2004 Phys. Rev. B 69 201401 | [34] | Ghosh B, Singh B, Prasad R and Agarwal A 2016 Phys. Rev. B 94 205426 | [35] | Liu Q H, Zhang X W, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222 | [36] | Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051 | [37] | Li Y, Yang S and Li J 2014 J. Phys. Chem. C 118 23970 | [38] | Taniguchi T and Watanabe K 2007 J. Cryst. Growth 303 525 | [39] | Kim J S, Liu Y N, Zhu W N, Kim S, Wu D, Tao L, Dodabalapur A, Lai K and Akinwande D 2015 Sci. Rep. 5 8989 | [40] | Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753 | [41] | Kim J S, Jeon P J, Lee J, Choi K, Lee H S, Cho Y, Lee Y T, Hwang D K and Im S 2015 Nano Lett. 15 5778 | [42] | Zhu H, McDonnell S, Qin X Y, Azcatl A, Cheng L X, Addou R, Kim J, Ye P D and Wallace R M 2015 ACS Appl. Mater. Interfaces 7 13038 | [43] | Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964 | [44] | Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 | [45] | Haratipour N and Koester S J 2016 IEEE Electron Device Lett. 37 103 | [46] | Luo X, Rahbarihagh Y, Hwang J C M, Liu H, Du Y and Ye P D 2014 IEEE Electron Device Lett. 35 1314 | [47] | Das S, Demarteau M and Roelofs A 2016 ACS Nano 10 2984 | [48] | Li L, Ye G J, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 608 | [49] | Sze S M and Ng K K 2006 Physics Of Semiconductor Devices (New York: John Wiley & Sons) Chap 3 p 185 | [50] | Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270 | [51] | Jana R K and Jena D 2011 Appl. Phys. Lett. 99 012104 | [52] | Deng B, Tran V, Jiang H, Li C, Xie Y T, Guo Q, Wang X, Tian H, Wang H, Cha J J, Xia Q, Yang L and Xia F N 2016 arXiv:1612.04475 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|