Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 047304    DOI: 10.1088/0256-307X/34/4/047304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors
Shi-Li Yan1, Zhi-Jian Xie1, Jian-Hao Chen1,3**, Takashi Taniguchi2, Kenji Watanabe2
1International Center for Quantum Materials, Peking University, Beijing 100871
2High Pressure Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen et al  2017 Chin. Phys. Lett. 34 047304
Download: PDF(1435KB)   PDF(mobile)(1572KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.
Received: 10 March 2017      Published: 21 March 2017
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.20.At (Surface states, band structure, electron density of states)  
  85.35.-p (Nanoelectronic devices)  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900, the National Natural Science Foundation of China under Grant No 11374021) (S. Yan, Z. Xie, J.-H. Chen). K.W. and T.T. acknowledge the support from the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas "Science of Atomic Layers" from JSPS.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/047304       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/047304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Li Yan
Zhi-Jian Xie
Jian-Hao Chen
Takashi Taniguchi
Kenji Watanabe
[1]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[2]Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[3]Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[4]Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[5]Tran V, Soklaski R, Liang Y F and Yang L 2014 Phys. Rev. B 89 235319
[6]Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Oezyilmaz B 2014 Appl. Phys. Lett. 104 10
[7]Fei R X and Yang L 2014 Nano Lett. 14 2884
[8]Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[9]Buscema M, Groenendijk D J, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nat. Commun. 5 4651
[10]Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
[11]Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414
[12]Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 12823
[13]Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H and Mei L 2017 Adv. Mater. 29 1603276
[14]Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H and Chu P K 2016 Nat. Commun. 7 12967
[15]Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, Liu Z, Han Y, Wang L, Li J, Deng L, Liu Y N and Guo S 2017 Adv. Mater. 29 1603864
[16]Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H and Chu P K 2015 Angew. Chem. Int. Ed. 54 11526
[17]Wang H, Yang X Z, Shao W, Chen S C, Xie J F, Zhang X D, Wang J and Xie Y 2015 J. Am. Chem. Soc. 137 11376
[18]Park C M and Sohn H J 2007 Adv. Mater. 19 2465
[19]Sun L Q, Li M J, Sun K, Yu S H, Wang R S and Xie H M 2012 J. Phys. Chem. Lett. 116 14772
[20]Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Koepf M, Nilges T and Zhou C 2015 ACS Nano 9 5618
[21]Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2016 Nano Lett. 16 2122
[22]Morita A 1986 Appl. Phys. A 39 227
[23]Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4873
[24]Kim K S, Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[25]Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[26]Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y and Chen X H 2015 Phys. Rev. Lett. 115 186403
[27]Chu T, Ilatikhameneh H, Klimeck G, Rahman R and Chen Z 2015 Nano Lett. 15 8000
[28]Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[29]Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[30]Yan J and Fuhrer M S 2010 Nano Lett. 10 4521
[31]Li J, Martin I, Buettiker M and Morpurgo A F 2011 Nat. Phys. 7 38
[32]Taychatanapat T and Jarillo-Herrero P 2010 Phys. Rev. Lett. 105 166601
[33]Khoo K H, Mazzoni M S C and Louie S G 2004 Phys. Rev. B 69 201401
[34]Ghosh B, Singh B, Prasad R and Agarwal A 2016 Phys. Rev. B 94 205426
[35]Liu Q H, Zhang X W, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[36]Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
[37]Li Y, Yang S and Li J 2014 J. Phys. Chem. C 118 23970
[38]Taniguchi T and Watanabe K 2007 J. Cryst. Growth 303 525
[39]Kim J S, Liu Y N, Zhu W N, Kim S, Wu D, Tao L, Dodabalapur A, Lai K and Akinwande D 2015 Sci. Rep. 5 8989
[40]Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753
[41]Kim J S, Jeon P J, Lee J, Choi K, Lee H S, Cho Y, Lee Y T, Hwang D K and Im S 2015 Nano Lett. 15 5778
[42]Zhu H, McDonnell S, Qin X Y, Azcatl A, Cheng L X, Addou R, Kim J, Ye P D and Wallace R M 2015 ACS Appl. Mater. Interfaces 7 13038
[43]Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964
[44]Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[45]Haratipour N and Koester S J 2016 IEEE Electron Device Lett. 37 103
[46]Luo X, Rahbarihagh Y, Hwang J C M, Liu H, Du Y and Ye P D 2014 IEEE Electron Device Lett. 35 1314
[47]Das S, Demarteau M and Roelofs A 2016 ACS Nano 10 2984
[48]Li L, Ye G J, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 608
[49]Sze S M and Ng K K 2006 Physics Of Semiconductor Devices (New York: John Wiley & Sons) Chap 3 p 185
[50]Yu Y, Yang F, Lu X F, Yan Y J, Cho Y H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 270
[51]Jana R K and Jena D 2011 Appl. Phys. Lett. 99 012104
[52]Deng B, Tran V, Jiang H, Li C, Xie Y T, Guo Q, Wang X, Tian H, Wang H, Cha J J, Xia Q, Yang L and Xia F N 2016 arXiv:1612.04475
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 047304
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 047304
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 047304
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 047304
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 047304
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 047304
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 047304
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 047304
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 047304
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 047304
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047304
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 047304
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 047304
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 047304
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 047304
Viewed
Full text


Abstract