Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 047302    DOI: 10.1088/0256-307X/34/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes
Yu-Zhuo Lv1, Peng Zhao1**, De-Sheng Liu2,3
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, Shandong University, Jinan 250100
3Department of Physics, Jining University, Qufu 273155
Cite this article:   
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu 2017 Chin. Phys. Lett. 34 047302
Download: PDF(708KB)   PDF(mobile)(698KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe-phthalocyanine dimers with two armchair single-walled carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.
Received: 04 December 2016      Published: 21 March 2017
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11104115, and the Natural Science Foundation of Shandong Province under Grant No ZR2016AM11.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/047302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/047302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Zhuo Lv
Peng Zhao
De-Sheng Liu
[1]Capozzi B, Xia J L, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M and Venkataraman L 2015 Nat. Nanotechnol. 10 522
[2]Zhang G P, Hu G C, Li Z L and Wang C K 2012 J. Phys. Chem. C 116 3773
[3]Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[4]Zhao P, Liu D S, Zhang Y, Su Y, Liu H Y, Li S J and Chen G 2012 J. Phys. Chem. C 116 7968
[5]Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L and Zhu H L 2016 Carbon 98 179
[6]Wu Q H, Zhao P and Liu D S 2014 Chin. Phys. Lett. 31 057304
[7]Jiang X W and Li S S 2014 Appl. Phys. Lett. 104 193510
[8]Li L, Engel M, Farmer D B, Han S and Philip W H S 2016 ACS Nano 10 4672
[9]Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
[10]Ferrer J and García-Suárez 2009 J. Mater. Chem. 19 1696
[11]Deng X Q, Zhang Z H, Tang G P, Fan Z Q, Sun L, Li C X and Zhang H L 2016 Org. Electron. 37 245
[12]Zeng J, Chen K Q and Long M Q 2016 Org. Electron. 35 12
[13]Bai J, Cheng R, Xiu F, Liao L, Wang M, Shailos A, Wang K L, Huang Y and Duan X 2010 Nat. Nanotechnol. 5 655
[14]Wu Q H, Zhao P and Chen G 2015 Org. Electron. 25 308
[15]Hu G C, Zhang Z, Zhang G P, Ren J F and Wang C K 2016 Org. Electron. 37 485
[16]Deng X Q, Zhang Z H, Fan Z Q, Tang G P, Sun L and Li C X 2016 Org. Electron. 32 41
[17]Jiang C, Wang X F and Zhai M X 2014 Carbon 68 406
[18]Wu Q H, Zhao P and Liu D S 2016 RSC Adv. 6 16634
[19]Wu Q H, Zhao P, Su Y, Li S J, Guo J H and Chen G 2015 RSC Adv. 5 52938
[20]Sproules S and Wieghardt K 2010 Cood. Chem. Rev. 254 1358
[21]Shen X, Sun L L, Yi Z L, Benassi E, Zhang R X, Shen Z Y, Sanvito S and Hou S M 2010 Phys. Chem. Chem. Phys. 12 10805
[22]Zhou Y H, Zeng J, Tang L M, Chen K Q and Hu W P 2013 Org. Electron. 14 2940
[23]Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C and Gao H J 2007 Phys. Rev. Lett. 99 106402
[24]Deng X Q, Zhang Z H, Tang G P, Fang Z Q, Sun L and Li C X 2016 Org. Electron. 35 1
[25]Makhseed S, Bumajdad A, Ghanem B, Msayib K and McKeown N B 2004 Tetrahedron Lett. 45 4865
[26]Huang J, Wang W Y, Yang S F, Su H B, Li Q X and Yang J L 2012 Chem. Phys. Lett. 539 102
[27]Zeng J and Chen K Q 2014 Appl. Phys. Lett. 104 033104
[28]Zeng J and Chen K Q 2015 J. Mater. Chem. C 3 5697
[29]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[30]Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[31]Anisimov V I, Solovyev I V and Korotin M A 1993 Phys. Rev. B 48 16929
[32]Rai D P, Shankar A, Sandeep, Ghimire M P and Thapa R K 2012 Physica B 407 3689
[33]Jin L and Zhou C 2013 Prog. Nat. Sci.-Mater. 23 413
[34]Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[35]Büttiker M and Landauer R 1985 Phys. Rev. B 31 6207
[36]Zeng J and Chen K Q 2016 Carbon 104 20
[37]Wu Q H, Zhao P, Liu D S and Chen G 2013 Solid State Commun. 174 5
[38]Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P 2003 Comput. Mater. Sci. 27 151
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 047302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 047302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 047302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 047302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 047302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 047302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 047302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 047302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 047302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 047302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 047302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 047302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 047302
[15] Rui-Fang Gao, Wen-Yong Su, Feng-Wang, Wan-Xiang Feng. Electron Transport Properties of Two-Dimensional Si$_{1}$P$_{1}$ Molecular Junctions[J]. Chin. Phys. Lett., 2017, 34(2): 047302
Viewed
Full text


Abstract