Chin. Phys. Lett.  2017, Vol. 34 Issue (4): 047301    DOI: 10.1088/0256-307X/34/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors
Xiang-Mi Zhan1, Mei-Lan Hao1,4, Quan Wang1, Wei Li1, Hong-Ling Xiao1,2,3, Chun Feng1,3, Li-Juan Jiang1,3, Cui-Mei Wang1,2,3, Xiao-Liang Wang1,2,3**, Zhan-Guo Wang1,3
1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049
3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083
4Department of Electro-mechanics, Handan College, Handan 056005
Cite this article:   
Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang et al  2017 Chin. Phys. Lett. 34 047301
Download: PDF(691KB)   PDF(mobile)(684KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AlInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current ($V_{\rm DS}=0.5$ V) shows a clear decrease of 69 $\mu$A upon the introduction of 1 $\mu$molL$^{-1}$ ($\mu$M) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 $\mu$A. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.
Received: 18 January 2017      Published: 21 March 2017
PACS:  73.61.Ey (III-V semiconductors)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301, the National Natural Sciences Foundation of China under Grant No 61334002, and the National Science and Technology Major Project.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/4/047301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Mi Zhan
Mei-Lan Hao
Quan Wang
Wei Li
Hong-Ling Xiao
Chun Feng
Li-Juan Jiang
Cui-Mei Wang
Xiao-Liang Wang
Zhan-Guo Wang
[1]Kim D S, Park H J, Jung H M, Shin J K, Choi P, Lee J H and Lim G 2004 Jpn. J. Appl. Phys. 43 3855
[2]Skogerboe K J 1993 Anal. Chem. 65 416
[3]Steinhoff G, Purrucker O, Tanaka M, Stutzmann M and Eickhoff M 2003 Adv. Funct. Mater. 13 841
[4]Wang X H, Wang X L, Feng C, Yang C B, Wang B Z, Ran J X, Xiao H L, Wang C M and Wang J X 2008 Microelectron. J. 39 20
[5]Wang X H, Wang X L, Feng C, Xiao H L, Yang C B, Wang J X, Wang B Z, Ran J X and Wang C M 2008 Chin. Phys. Lett. 25 266
[6]Feng C, Wang X L, Yang C B, Xiao H L, Zhang M L, Jiang L J, Tang J, Hu G X, Wang J X and Wang Z G 2008 Chin. Phys. Lett. 25 3025
[7]Mehandru R, Luo B, Kang B S, Kim J, Ren F, Pearton S J, Pan C C, Chen G T and Chyi J I 2004 Solid-State Electron. 48 351
[8]Kang B S, Wang H T, Ren F, Gila B P, Abernathy C R, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 012110
[9]Kang B S, Ren F, Kang M C, Lofton C, Tan W H, Pearton S J, Dabiran A, Osinsky A and Chow P P 2005 Appl. Phys. Lett. 86 173502
[10]Wang H T, Kang B S, Chancellor T F, Jr, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 042114
[11]Cheng J J, Li J D, Miao B, Wang J N, Wu Z Y, Wu D M and Pei R J 2014 Appl. Phys. Lett. 105 083121
[12]Kang B S, Wang H T, Lele T P, Tseng Y, Ren F, Pearton S J, Johnson J W, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2007 Appl. Phys. Lett. 91 112106
[13]Li J D, Cheng J J, Miao B, Wei X W, Xie J, Zhang J C, Zhang Z Q and Wu D M 2014 J. Micromech. Microeng. 24 075023
[14]Wang Y and Lu W 2011 Phys. Status Solidi A 208 1623
[15]Kang B S, Pearton S J, Chen J J, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L and Linthicum K J 2006 Appl. Phys. Lett. 89 122102
[16]Thapa R, Alur S, Kim K, Tong F, Sharma Y, Kim M, Ahyi C, Dai J, Hong J W, Bozack M, Williams J, Son A, Dabiran A and Park M 2012 Appl. Phys. Lett. 100 232109
[17]Kohn E and Medjdoub F 2007 Int. Workshop Phys. Semiconductor Devices (Mumbai India 16–20 December 2007) p 311
[18]Brazzini T, Bengoechea-Encabo A, Sánchez-García M A and Calle F 2013 Sens. Actuators B 176 704
[19]Weng W Y, Chang S J, Hsueh T J, Hsu C L, Li M J and Lai W C 2009 Sens. Actuators B 140 139
[20]Jia X L, Huang X Y, Tang Y, Yang L H, Chen D J, Lu H, Zhang R and Zheng Y D 2016 IEEE Electron. Dev. Lett. 37 913
[21]Huang Y L, Zhang L, Cheng Z, Zhang Y, Ai Y J, Zhao Y B, Lu H X, Wang J X and Li J M 2016 J. Semicond. 37 114002
[22]Cui L, Yin H B, Jiang L J, Wang Q, Feng C, Xiao H L, Wang C M, Gong J M, Zhang B, Li B Q, Wang X L and Wang Z G 2015 J. Semicond. 36 103002
[23]Xiao Y, Lai R Y and Plaxco K W 2007 Nat. Protoc. 2 2875
[24]Biener M M, Biener J and Friend C M 2005 Langmuir 21 1668
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 047301
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 047301
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 047301
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 047301
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 047301
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 047301
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 047301
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 047301
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 047301
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 047301
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 047301
[12] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 047301
[13] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 047301
[14] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 047301
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 047301
Viewed
Full text


Abstract