Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 027701    DOI: 10.1088/0256-307X/34/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improved Polarization Retention of BiFeO$_{3}$ Thin Films Using GdScO$_{3}$ (110) Substrates
Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo, Wen-Ping Geng, Zi-Long Bai, An-Quan Jiang**
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433
Cite this article:   
Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo et al  2017 Chin. Phys. Lett. 34 027701
Download: PDF(1797KB)   PDF(mobile)(1795KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Epitaxial ferroelectric thin films on single-crystal substrates generally show a preferred domain orientation in one direction over the other in demonstration of a poor polarization retention. This behavior will affect their application in nonvolatile ferroelectric random access memories where bipolar polarization states are used to store the logic 0 and 1 data. Here the retention characteristics of BiFeO$_{3}$ thin films with SrRuO$_{3}$ bottom electrodes on both GdScO$_{3}$ (110) and SrTiO$_{3}$ (100) substrates are studied and compared, and the results of piezoresponse force microscopy provide a long time retention property of the films on two substrates. It is found that bismuth ferrite thin films grown on GdScO$_{3}$ substrates show no preferred domain variants in comparison with the preferred downward polarization orientation toward bottom electrodes on SrTiO$_{3}$ substrates. The retention test from a positive-up domain to a negative-down domain using a signal generator and an oscilloscope coincidentally shows bistable polarization states on the GdScO$_{3}$ substrate over a measuring time of 500 s, unlike the preferred domain orientation on SrTiO$_{3}$, where more than 65% of upward domains disappear after 1 s. In addition, different sizes of domains have been written and read by using the scanning tip of piezoresponse force microscopy, where the polarization can stabilize over one month. This study paves one route to improve the polarization retention property through the optimization of the lattice-mismatched stresses between films and substrates.
Received: 28 October 2016      Published: 25 January 2017
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.80.Dj (Domain structure; hysteresis)  
  77.55.-g (Dielectric thin films)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB921004, and the National Natural Science Foundation of China under Grant No 61225020.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/027701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/027701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai-Qi Xu
Yan Zhang
Hui-Zhen Guo
Wen-Ping Geng
Zi-Long Bai
An-Quan Jiang
[1]Chu Y H et al 2006 Adv. Mater. 18 2307
[2]Das R R et al 2006 Appl. Phys. Lett. 88 242904
[3]Baek S H, Folkman C, Park M et al 2011 Adv. Mater. 23 1621
[4]Liu X B, Ding N F, Jiang A Q and Yang P X 2012 Appl. Phys. Lett. 100 132901
[5]Wang S Y, Qiu X, Gao J et al 2011 Appl. Phys. Lett. 98 152902
[6]Meng J W, Jiang J, Geng W P et al 2015 Jpn. J. Appl. Phys. 54 024102
[7]Lee C C and Wu J M 2007 Appl. Phys. Lett. 91 102906
[8]Johann F, Morelli A, Biggemann D et al 2011 Phys. Rev. B 84 094105
[9]Shelke V, Mazumdar D, Srinivasan G et al 2011 Adv. Mater. 23 669
[10]Jiang A Q, Liu X B and Zhang Q 2011 Appl. Phys. Lett. 99 142905
[11]Zavaliche F, Yang S Y, Zhao T, Chu Y H et al 2007 Phase Transit. 79 991
[12]Jo W, Kim D C and Hong J W 2000 Appl. Phys. Lett. 76 390
[13]Chen Z, Liu J, Qi Y J, Chen D Y, Hsu S L et al 2015 Nano Lett. 15 6506
[14]Kang B S et al 2002 Jpn. J. Appl. Phys. 41 5281
[15]Shao G, Bai Y, Cui G, Li C et al 2016 AIP Adv. 6 075011
Related articles from Frontiers Journals
[1] Yali Yang, Laurent Bellaiche, and Hongjun Xiang. Ferroelectricity in Charge-Ordering Crystals with Centrosymmetric Lattices[J]. Chin. Phys. Lett., 2022, 39(9): 027701
[2] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 027701
[3] Wei Zhao, Zhengqian Fu, Jianming Deng, Song Li, Yifeng Han, Man-Rong Li, Xueyun Wang, and Jiawang Hong. Observation of Ferroelastic and Ferroelectric Domains in AgNbO$_{3}$ Single Crystal[J]. Chin. Phys. Lett., 2021, 38(3): 027701
[4] Qunfei Zheng, Qiang Li, Saidong Xue, Yanhui Wu, Lijuan Wang, Qian Zhang, Xiaomei Qin, Xiangyong Zhao, Feifei Wang, and Wenge Yang. Pressure Driven Structural Evolutions of 0.935(Na$_{0.5}$Bi$_{0.5}$)TiO$_{3}$-0.065BaTiO$_{3}$ Lead-Free Ferroelectric Single Crystal through Raman Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(2): 027701
[5] Qiang-zhong Wang, Gang Wang, Fa-xin Li. Precise, Long-Time Displacement Self-Sensing of Piezoelectric Cantilever Actuators Based on Charge Measurement Using the Sawyer–Tower Circuit[J]. Chin. Phys. Lett., 2018, 35(10): 027701
[6] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 027701
[7] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 027701
[8] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 027701
[9] LENG Sen-Lin, SHI Wei, LI Guo-Rong, ZHENG Liao-Ying. Potential Barrier Behavior of BaTiO3–(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic[J]. Chin. Phys. Lett., 2015, 32(4): 027701
[10] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 027701
[11] HUANG Nai-Xing, LÜ Tian-Quan, ZHANG Rui, WANG Yu-Ling, CAO Wen-Wu. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate[J]. Chin. Phys. Lett., 2014, 31(10): 027701
[12] YU Wen-Jie, ZHANG Bo, LIU Chang, XUE Zhong-Ying, CHEN Ming, ZHAO Qing-Tai. Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(1): 027701
[13] RAO Wei, WANG Yun-Bo, WANG Ye-An, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Magnetostatic Coupling in Ba0.8Sr0.2TiO3/CoFe2O4 Magnetoelectric Composite Thin Films of 2-2-Type Structure[J]. Chin. Phys. Lett., 2014, 31(1): 027701
[14] HAO Wen-Tao, ZHANG Jia-Liang, ZHENG Peng, WU Yan-Qing, TAN Yong-Qiang, ZHAO Xu. Influence of Orthorhombic-Tetragonal Phase Transition on Microwave Dielectric Dispersion of BaTiO3 Ceramic[J]. Chin. Phys. Lett., 2013, 30(12): 027701
[15] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties and Magnetoelectric Effect of the Ba0.8Sr0.2TiO3/CoFe2O4 Heterostructure Film by Radio-Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2013, 30(4): 027701
Viewed
Full text


Abstract