CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improved Polarization Retention of BiFeO$_{3}$ Thin Films Using GdScO$_{3}$ (110) Substrates |
Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo, Wen-Ping Geng, Zi-Long Bai, An-Quan Jiang** |
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433
|
|
Cite this article: |
Shuai-Qi Xu, Yan Zhang, Hui-Zhen Guo et al 2017 Chin. Phys. Lett. 34 027701 |
|
|
Abstract Epitaxial ferroelectric thin films on single-crystal substrates generally show a preferred domain orientation in one direction over the other in demonstration of a poor polarization retention. This behavior will affect their application in nonvolatile ferroelectric random access memories where bipolar polarization states are used to store the logic 0 and 1 data. Here the retention characteristics of BiFeO$_{3}$ thin films with SrRuO$_{3}$ bottom electrodes on both GdScO$_{3}$ (110) and SrTiO$_{3}$ (100) substrates are studied and compared, and the results of piezoresponse force microscopy provide a long time retention property of the films on two substrates. It is found that bismuth ferrite thin films grown on GdScO$_{3}$ substrates show no preferred domain variants in comparison with the preferred downward polarization orientation toward bottom electrodes on SrTiO$_{3}$ substrates. The retention test from a positive-up domain to a negative-down domain using a signal generator and an oscilloscope coincidentally shows bistable polarization states on the GdScO$_{3}$ substrate over a measuring time of 500 s, unlike the preferred domain orientation on SrTiO$_{3}$, where more than 65% of upward domains disappear after 1 s. In addition, different sizes of domains have been written and read by using the scanning tip of piezoresponse force microscopy, where the polarization can stabilize over one month. This study paves one route to improve the polarization retention property through the optimization of the lattice-mismatched stresses between films and substrates.
|
|
Received: 28 October 2016
Published: 25 January 2017
|
|
PACS: |
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
77.80.Dj
|
(Domain structure; hysteresis)
|
|
77.55.-g
|
(Dielectric thin films)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB921004, and the National Natural Science Foundation of China under Grant No 61225020. |
|
|
[1] | Chu Y H et al 2006 Adv. Mater. 18 2307 | [2] | Das R R et al 2006 Appl. Phys. Lett. 88 242904 | [3] | Baek S H, Folkman C, Park M et al 2011 Adv. Mater. 23 1621 | [4] | Liu X B, Ding N F, Jiang A Q and Yang P X 2012 Appl. Phys. Lett. 100 132901 | [5] | Wang S Y, Qiu X, Gao J et al 2011 Appl. Phys. Lett. 98 152902 | [6] | Meng J W, Jiang J, Geng W P et al 2015 Jpn. J. Appl. Phys. 54 024102 | [7] | Lee C C and Wu J M 2007 Appl. Phys. Lett. 91 102906 | [8] | Johann F, Morelli A, Biggemann D et al 2011 Phys. Rev. B 84 094105 | [9] | Shelke V, Mazumdar D, Srinivasan G et al 2011 Adv. Mater. 23 669 | [10] | Jiang A Q, Liu X B and Zhang Q 2011 Appl. Phys. Lett. 99 142905 | [11] | Zavaliche F, Yang S Y, Zhao T, Chu Y H et al 2007 Phase Transit. 79 991 | [12] | Jo W, Kim D C and Hong J W 2000 Appl. Phys. Lett. 76 390 | [13] | Chen Z, Liu J, Qi Y J, Chen D Y, Hsu S L et al 2015 Nano Lett. 15 6506 | [14] | Kang B S et al 2002 Jpn. J. Appl. Phys. 41 5281 | [15] | Shao G, Bai Y, Cui G, Li C et al 2016 AIP Adv. 6 075011 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|