Chin. Phys. Lett.  2017, Vol. 34 Issue (2): 025202    DOI: 10.1088/0256-307X/34/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Growth of Single-Crystalline Silicon Nanocone Arrays by Plasma Sputtering Reaction Deposition
Zhi-Cheng Wu, Lei-Lei Guan, Hui Li, Jia-Da Wu, Jian Sun, Ning Xu**,
Department of Optical Science and Engineering, Fudan University, Shanghai 200433
Cite this article:   
Zhi-Cheng Wu, Lei-Lei Guan, Hui Li et al  2017 Chin. Phys. Lett. 34 025202
Download: PDF(692KB)   PDF(mobile)(688KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Vertically aligned single-crystalline silicon nanocone (Si-NC) arrays are grown on nickel-coated silicon (100) substrates by a novel method i.e., abnormal glow-discharge plasma sputtering reaction deposition. The experimental results show that the inlet CH$_{4}$/(N$_{2}$+H$_{2}$) ratio has great effects on the morphology of the grown Si-NC arrays. The characterization of the morphology, crystalline structure and composition of the grown Si-NCs indicates that the Si-NCs are grown epitaxially in the vapor–liquid–solid mode. The analyses of optical emission spectra further reveal that the inlet methane can promote the growth of Si-NCs by raising the plasma temperature and enhancing the ion-sputtering. The understanding of the growth mechanism of the Si-NC arrays will be helpful for fabrication of required Si-NC arrays.
Received: 27 October 2016      Published: 25 January 2017
PACS:  52.80.Tn (Other gas discharges)  
  81.15.Cd (Deposition by sputtering)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB934303, the Natural Science Foundation of Shanghai under Grant No 15ZR1403300 and the National Natural Science Foundation of China under Grant No 11275051.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/2/025202       OR      https://cpl.iphy.ac.cn/Y2017/V34/I2/025202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Cheng Wu
Lei-Lei Guan
Hui Li
Jia-Da Wu
Jian Sun
Ning Xu
[1]Her T H, Finlay R J, Wu C, Deliwala S and Mazur E 1998 Appl. Phys. Lett. 73 1673
[2]Liu Y, Sun S H, Xu J, Zhao L, Sun H C, Li J, Mu W W, Xu L and Chen K J 2011 Opt. Express 19 A1051
[3]Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, McGehee M, Fan S and Cui Y 2009 Nano Lett. 9 279
[4]Xia Y, Liu B W, Liu J, Shen Z N and Li C B 2011 Sol. Energy 85 1574
[5]Jeong S, Garnett E C, Wang S, Yu Z, Fan S, Brongersma M L, McGehee M D and Cui Y 2012 Nano Lett. 12 2971
[6]Jeong S, McGehee M D and Cui Y 2013 Nat. Commun. 4 2950
[7]Zhou K, Li X, Liu S and Lee J 2014 Nanotechnology 25 415401
[8]He J, Yang Z, Liu P, Wu S, Gao P, Wang M, Zhou S, Li X, Cao H and Ye J 2016 Adv. Energy Mater. 6 1501793
[9]Zhang S, Liu W, Li Z, Liu M, Liu Y, Wang X and Yang F 2016 Chin. Phys. B 25 106802
[10]Qiu Y, Hao H C, Zhou J and Lu M 2012 Opt. Express 20 22087
[11]Ravi T S and Marcus R B 1991 J. Vac. Sci. Technol. B 9 2733
[12]Cho K and Joannopoulos J D 1993 Phys. Rev. Lett. 71 1387
[13]Kong L, Orr B G and Wise K D 1993 J. Vac. Sci. Technol. B 11 634
[14]Kichambare P D, Tarntair F G, Chen L C, Chen K H and Cheng H C 2000 J. Vac. Sci. Technol. B 18 2722
[15]Shirai H, Kobayashi T and Hasegawa Y 2005 Appl. Phys. Lett. 87 143112
[16]Chuang P K, Teng I J, Wang W H and Kuo C T 2005 Diamond Relat. Mater. 14 1911
[17]Hu W, Xu N, Xu X F, Wu J D, Shen Y Q and Ying Z F 2009 Chem. Vap. Depos. 15 306
[18]Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[19]Prueitt L M 1963 J. Geophys. Res. 68 803
Related articles from Frontiers Journals
[1] Wen-Zheng Liu, Shuai Zhao, Mao-Lin Chai, Jiang-Qi Niu. A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air[J]. Chin. Phys. Lett., 2017, 34(8): 025202
[2] WANG Yi-Nan, LIU Yue, LIN Guo-Qiang. A Computational Study of Radio Frequency Atmospheric Pressure Discharge in Nitrogen and Oxygen Mixture Gases[J]. Chin. Phys. Lett., 2013, 30(3): 025202
[3] LI Xue-Chen**, JIA Peng-Ying, ZHAO Na . Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure[J]. Chin. Phys. Lett., 2011, 28(4): 025202
[4] DUAN Ping, WANG Zheng-Xiong, LIU Yue, LIU Jin-Yuan, WANG Xiao-Gang. Dust Charging in Electronegative SiH4 Plasmas[J]. Chin. Phys. Lett., 2005, 22(2): 025202
[5] DONG Li-Fang, HE Ya-Feng, YIN Zeng-Qian, CHAI Zhi-Fang. Experimental Observation of Traveling Hexagon Patterns in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2003, 20(9): 025202
[6] LI Zhen-Hua, WANG Miao, WANG Xin-Qing, ZHU Hai-Bin, LU Huan-Ming, Y. Ando. Synthesis of Large Quantity Single-Walled Carbon Nanotubes by Arc-Discharge[J]. Chin. Phys. Lett., 2002, 19(1): 025202
[7] WANG Pei-nan, Pan Qi, Cheung Nai-Ho, Chen Shu-Chi. A Novel Application of the Pulsed Nitrogen Discharge in the Synthesis of Aluminum Nitride Powder by Laser Ablation[J]. Chin. Phys. Lett., 1997, 14(12): 025202
[8] YAO Xin-zi, JIANG De-yi. Experiment on the Nonlinear Phenomena in an Electron Cyclotron Resonance Plasma[J]. Chin. Phys. Lett., 1996, 13(12): 025202
[9] HU Xiwei, CHEN Yang. Mechanism of Low Pressure dc Breakdown in a Thermo-Cathode Gas Discharge[J]. Chin. Phys. Lett., 1993, 10(7): 025202
[10] TANG Xiaowei. Gas Multiplication in the Proportional Region[J]. Chin. Phys. Lett., 1991, 8(7): 025202
[11] TANG Xiaowei. Semi-empirical Formula of the Gas Gain in Limited Proportional Region[J]. Chin. Phys. Lett., 1991, 8(5): 025202
Viewed
Full text


Abstract